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University of Washington

Abstract

DECIDABILITY AND EXPRESSIVENESS
OF LOGIC AND PROCESSES

By Karl Raymond Abrahamson
Chairperson of the Supervisory Committee:
Professor Michael J. Fischer
Department of Computer Science

We define and study several logics of processes. The
logics GPL and MPL are based on a second order tense logic,
where the two types of variable range over computation
sequences and points on computation sequences. GPL is a
version of the predicate calculus, similar to Parikh's
general logic. MPL is a modal logic, and is the only modal
process logic we know of which incorporates -two funda-
mentally different types of modality. When syntactic
programs are included in MPL, MPL is at least as expressive as
PDL+, Parikh's SOAPL, Pnueli's tense logic or Nishimura's
process logic, and contains both Lamport's linear and
branching time logics.

We present a tableau method for deciding validity in
MPL, based on a new type of directed graph, called an
LL-graph. From the tableau method we derive a coﬁélete
proof system for MPL.

Although GPL and MPL are based on the same notions,
we £ind some interesting differences between thé two.

MPL is decidable in double exponential time, while even 2

proper subset of GPL, which can express the same properties
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as MPL, is nonelementary. We are able to show that GPL is
decidable only when processes are tree-like, in Parikh's
gense. In contrast, our method for deciding MPL in
general requires processes which are not tree-like.

Processes are defined on a very abstract level, as
sets of computation sequences. Intrinsic to our definition
of a process is the notion of deadlock. Both GPL and MPL
have provisions for explicitly discussing deadlock, which
most other process logics to date ignore.

We also study extensions to PDL. We show, provided
only that basic programs are indivisible actions, that
extending PDL by a concurrency operator, a global invari-
ance operator and flowgraph programs, among others, adds
no expressive power to PDL. Moreover, there is a better
way to decide formulas in the extended logic than to trans-
late them to PDL. We extend PDL by adding special Boolean
variables, which can be set and tested. Boolean variable
PDL efficiently simulates the above extensions, and is
shown to be decidable by a faster method than by eliminating

Boolean variables.

We prove a lower bound on the complexity of B-PDL
which is a function of two parameters, the length of the
input, and the number of variables it contains. The proof

involves a compression theorem for functions of several

variables, which may be of general use.
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Chapter 1

Introduction

In recent years a great deal of effort has gone into
discovering convenient and powerful methods of reasoning
about the behavior of computer programs. There are two
main goals of this research. First, we need a precise
definition of exactly what a program is. At present there
is no general agreement on the exact meanings of programs,
and there is even less agreement on what sort of programs
we should be assigning meaning to. Second, we need a
convenient but precise method of proving properties of
programs. Even when the meaning of a program is understood,
the very general set-theoretic proofs have proved
cumbersome, with most authors choosing more informal
methods. The results have been incorrect or unconvincing
proofs. For example, Dijkstra's on-the-fly garbage
collector {D78] in its original version contained a
subtle bug, although Dijkstra "proved" the program correct.

Below is a brief history of the work leading up to
this work.

Floyd [F167] and Hoare [Ho69] presented early systems
for reasoning about programs. Those methods are used
primarily for proving properties related to termination of

the program. For example, Hoare's partial correctness
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assertion P {A} Q states that if program A is started with
P true, then whenever (if ever) A terminates, Q holds.
Floyd suggests the well-~founded-set method of proving
that a program must terminate, which consists of showing
that going around any loops in the program must result

in the decrease of some well founded quantity.

ey .

Partial correctness is far from the only useful

property of programs. Manna and Waldihger [MW78) give

examples where using the condition "P must eventually

RIS T TR

become true” leads to natural proofs of interesting

properties of programs. A really useful logic of programs

should permit its user many different methods of reason- '3

R R
T

ing about programs.
Harel's pr* [HP78] bring the "eventuality" and partial

Pratt's Dynamic Logic [Pr76} and later i
] F.

correctness methods together into a single elegant frame-

work. The heart of DL is the formula [A]Q, meaning "if

program A is started in the current state, then whenever

(if ever) A terminates, Q holds." The Hoare style partial

correctness assertion P {A} Q is expressed in DL as

R —

P © {A}Q, which simply states that, if P holds in the

current state, then [A)Q also holds in the current state.

The dual <A>Q = ~[AJMQ of [A]Q states that it is possible

for program A to halt with Q true, Dynamic Logic programs

are in general nondeterministic. Hence it is possible for

<A>Q and <A>\Q to be simultaneously true,

Among concurrent programs, programs which terminate

B R L AN
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3
are the exception rather than the rule. Typical nonter-
minating programs are operating systems, on-the-£fly
garbage collectors, the dining philosophers program, and
so on (see [FP76)). It is clear that termination proper-
ties are inadequate for reasoning about such programs.
Pratt [Pr78} suggests extending Dynamic Logic by adding
new operators for discussing the behavior of a program
in time. For instance, the operator {A}Q expresses the
global invariance of Q over A, meaning that Q holds through-
out the execution of program A, started in the current
state. Numerous other properties are possible.

Among possible operators for describing the temporal
behavior of programs, Lamport [L80] identifies two classes:
linear time and branching time operators. Most logics
to date include either one or the other, but not both.

As both have uses, a powerful logic should include both.

By process logic, we mean any language which is
used to express properties of processes, or programs, the
properties in general not being related to the termination
of the process. We have mentioned the process logics of
Pratt and Lamport. Others, which are described in more
detail later, are the process logics of Pnueli (Pn77,
Pn79), Gabbay et al., [GPSS80), Parikh [Pa78), Harel
et al., (HKP80], and Nishimura [N79].

In this work we take three approaches to process

logic.
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1. What sorts of properties can be expressed in a
simple, termination oriented logic, in particular Propo-
siticnal Dynamic Logic (PDL)? 1In Chapter 2 we demonstrate
that PDL can express much more than is readily apparent.
The power of PDL is revealed by adding auxiliary Boolean ~
variables to PDL. Such variables add no expressive power

to PDL, though they allow more concise expression of some

properties. In particular, properties regarding the
concurrent execution of programs can be expressed concisely
using Boolean variables.

While PDL can express a surprising number of proper-
ties of programs, it cannot express all that we need.
Therefore we develop more powerful logics.

2. The second approach is the classical approach
of defining a version of the predicate calculus which is
suited to describing processes. We call this logic GPL,
for General Process Logic. Unlike PDL, GPL does not have
programs -- a valid GPL sentence is one which holds for

all processes. The absence of programs makes the presen-

tation of GPL simpler, and allows us to at least partially
analyze GPL.

3. The third approach is to adapt modal logic to
a logic of processes. The logic MPL (for Modal Process
logic) is slightly less expressive than GPL, but is much

easier to analyze, and to work with in general, We prove

s : Rt ez W S




5

that MPL is decidable, and give a complete proof system

for MPL.

Neither GPL nor MPL has programs. In Chapter 5
we consider the addition of programs to MPL. (Programs
can also be added to GPL, but we do not bother to define
GPL with programs here.) MPL with programs is called
{ MPL/P. MPL/P has at least as much expressive power as
Nishimura's process logic [N79], which in turn is at least

as expressive at Pratt's process logic [Pr78}, and

Parikh's SOAPL [Pa78]. We conjecture that MPL/P is more

expressive than all of the above logics.

l.l. Processes |

The rest of this chapter is spent defining processes
and programs and discussing the consequences of those
definitions. Of primary importance is the discussion of

blocking, which may differ from the reader's notion.

A process is a semantic entity, as opposed to a
program, which is syntactic. We choose a very abstract
E notion of process. There are no communication primitives,

as there are in [Ho76, MM77). 1Instead, individual pro-

cesses communicate with each other by altering a common
state, which can be thought of as encompassing all of the
A memory of the system, whether private to a given process

or shared by two or more processes. Indeed, there is no
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notion of several processes inherent to the semantics of
processes. The definition of a process is sufficiently
general that an entire system of processes running concur-
rently can be viewed as a single super process, '
Our notion of process is related to Pratt's, in that
a process is a set of computation sequences over a given
set of states U. The main difference is that rather than
being a sequence of states, a computation sequence, or
path, is a sequence of transitions between states. The
transition from state u to state v is written <u»v>.
Additionally, each path has a start state, which is of use
primarily when the sequence of transitions is empty.
Our definitions are simplified by postulating a spe-
cial state AU, a "block" state. Unlike Pratt's A, our
A can never actually be entered by a process. The role

of A is explained in detail under blocking below.

Formally, the set of paths ¥(U) over U and the
set of processes IlI(U) over U, where U is a countable set

of states, are defined as

*
Y(U) = U x (UxU y <A+A>) @

with the condition that if (u, <v+w>0) € ¥(U) then either

v=u or v=A. |
() = P(Y(V)).

s'*“ denotes finite and infinite sequences over §, and

P denotes powerset. Some other useful definitions are

[

‘!
+
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as follows: L

Let ¢ = (u,0) and ¥v* = (u”,0”) be paths. ;
2(y) = the number of transitions in o (possibly w). !
start(y) = u.

u if o=},
end (V) ={w if o=1<vr+w>,

undefined if 2 (y)=uw.
¥ is a prefix of ¢° if o is a prefix of ¢°, and u=u”’.
The concatenation Yy of ¢y and ¢° is defined when

L(v7)>0.

v if 2 (¥) = w b
Yy~ = i
(u, 6+0”) if 2 (Y) < w ‘

The only restrictions on paths are that 1) A appear
only in the transition <A+A> and 2) the start state be
the same as the first state in the first transition (or A).
For example, § = (u, <u+w><y+z>) is an acceptable path,
even when w ¥ y. Path | represents a computation sequence

which reaches state w, then moves from state y to state 2z,

an impossibility. There are reasons for accepting such
absurd paths. One is that some concurrent process, to be
added later, could in fact make the phantom transition
from w to y. Another reason is discussed below. We say

that a path ¢y is legal provided

V= (U,0<Vsw><y+2>0") D w=y,
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The stages S(U) are the finite legal paths over U. 1If
T is a process, the set pre(n) is the set of all stages
which are prefixes of members of r,

Transition sequences have some advantages over
ordinary computation sequences (segquences of states).

One is that the concurrent execution of two processes can
be defined simply as the shuffle of the transition sequences
associated with each process. The same is not true for
state sequences, for they don't retain enough information.
Another advantage is that blocking, an important notion

of concurrent processes, is readily defined in terms of
transition sequences. A third advantage is that transi-
tions can be labeled, so that it is possible to tell which
process makes a given transition. Such labels are impera-
tive if we wish to know if a given path is fair, in the
sense that each process makes infinitely many transitions.
Labels are discussed further in Chapter 5.

As can be seen from the lack of restrictions on
processes, processes are nondeterministic. A process may
have any number of paths whose initial state is u.
Moreover, a process may contain any number of paths, all
with prefix ¢. Intuitively, that means that, after running
for a while and reaching stage ¥, there are many possible
ways in which the process might continue. Processes may
exhibit infinite nondeterminism, which means that, even

when the set U is finite, and ignoring blocked paths,




e

9

a given process m might not be the set of paths in any

finite branching tree. 1Infinite nondeterminism is required
to represent several processes running concurrently,

even when each component process is treelike (see [LF79])),

e A

provided the concurrency operation obeys the finite delay
property: No component of a concurrent system which is

ready to execute a transition infinitely often is forever

denied executing a transition. A simple program which

exhibits infinite nondeterminism is

(while x=0 do noop)//(x:=1).

The first component may run arbitrarily much faster than

the second process, but not infinitely much faster.

Hence, assuming x=0 at the start, the while loop may be

:
executed any finite number of times, but not infinitely ﬁ
many times. We will find that infinite nondeterminism

has special significance in both GPL and MPL, though in

opposite ways. Our decision method for MPL makes use
of processes which exhibit infinite nondeterminism, while

that for GPL cannot deal with such processes.

Blocking

Every path has cthree possible fates; it may terminate,
run forever or block. A terminating path is a finite
legal path. Infinite legal paths run forever. And a
blocking path is an illegal path, whether finite or

T I s - Y
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: infinite. For example, let u and v be distinct states.
(u, <A=A>)
(u, <u+vsqu=+v>),

and (u, <u-=v><A-+A>)

N IR T

are all blocked paths. The transition <u-+v> cannot be
executed unless the process is in state u. Note that the
transition <A+A> aan never be executed on any path, for
no path may begin in state A, and no transition of the
form <u-+A>, for u ¥ A, is permitted. Thus <A=+A> is a
"block marker." It is convenient to have such a marker
which must always cause a biock.

Our notion of blocking may be different from the
reader's. 1In our notion, a block in a path merely means
that the rest of the path is nonsense, suggesting that

some other path be taken. Consider the program

while true do nothing.

In terms of PDL programs, defined shortly, "while true do

nothing” is written
(true?)*; false?.

Suppose U contains a single state u. Then by the defini-
tion in the next section, (true?)*; false? represents the

Keaans) s k>0} v {(u, <usu>“)}.

process 1 = {(u, <u+u>
Almost all of the paths block. But every stage (u, <u»u>k)

is a prefix of some path which does not block at that




11
stage. Imagine an interpreter executing n. The inter- |
preter must make nondeterministic choices. The choices "4
can be made by choosing a path, say (u, <u*u>k<A+A>). h
After executing <u*u>k, the interpreter encounters the | :
transition <A-+A>, which it cannot execute. Rather than !
giving up, the interpreter can choose a new path which has
<u+u>k as a prefix, and so might just as well have been
the chosen path. 1In fact, the interpreter can always find
a path in 1 along which it can continue.

The interpreter (or "oracle," since it makes "correct"
nondeterministic choices) just described is not built into
processes in any sense. Rather, the statements which we
make about processes can be looked at as having the form
“when 7 is evaluated by a smart interpreter (one which tries
other paths when a block is encountered on one path), then
n obeys property p." For example, if we want to state
that 7 cannot block, we do not say that n contains no
blocked paths, but instead say that every legal prefix of
every path in 7 is a proper prefix of some legal prefix
of some (possibly different) member of 7. The formula
itself specifies the degree of wisdom of the oracle.

Reif and Peterson [RPB0]) carry the ability to specify
the behavior of an oracle even further. 1In their logic,

a formula can call for an oracle which is benevolent with
respect to choices made by some components, and malicious

with respect to choices made by others. Generally, it is
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conceivable that some sort of "oracle specifier" could be
added to the box operator of MPL (see Chapter 4), restrict-
ing the range of quantification over paths. We do not

consider oracle specifiers in this work.

1.2. Programs

We use Propositional Dynamic Logic program syntax

for our programs, with the addition of a concurrency

operator. Thus concurrent programs are statically created,
as in [LF79, 0G76]. We do not make any provision for
running arbitrarily many copies of a program in parallel,
as in [S78). PDL programs are particularly easy to give

a semantics for. Also, in Chapter 2 we choose PDL as a
termination logic framework, making PDL programs the most
natural to use for our other logics. For the semantics of
programs, we use processes. Program a represents process
n{a). Basic programs are just symbols from a set Zo,

and are given interpretation wozto*n(U).

We place some restrictions on the processes represented
by programs.

1. wn(a) must not contain any paths of length zero.
Bach transition represents one unit of time. If o can
completely execute in gzero units of time, then a* can
execute infinitely many times in zero units of time,
an undesirable situation.

2. Por every state u, n(a) contains at least one
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. path starting at u. This is really no restriction, since
T (a) may contain only the path (u, <A+A>), which blocks
without doing anything at all. This is mainly a technical
restriction, making definitions slightly easier.

The syntax and semantics m:programs+J1(U) of programs

l. Any basic program is a program, with

f
[ is given below. Let a and B be programs.
g m(A) = WO(A).

2. av B is a program. o v B8 means "nondeterminis-
tically choose to run either a or B." 7(a v 8) = 7(a)
v n(B).

3. a;B is a program, ;g means "run a, followed
by B." =m(a:g) = nlg)+n(p) (concatenation of processes).

4. o* is a program. g* means "run g any number
(possibly w) of times, the choice being made nondetermi-
nistacally. n(a*) = w(a)*+“.

5. a//B is a program. o//Bmeans "run o and 8 in

quasi-parallel.” w(a//8) is the smallest set which

satisfies the following:

Suppose (u, Uye0y = ) € v(a) and

(V) Ty°15 «eo ) € W(B),

where oy and T, are nonempty, and o5 and 1; are either
empty or finite or infinite for i»l.
Then

(W,0,°77905°T5 «os ) € n(a//B)
and  (V,7,°0,°7,°0, «.0 ) € wla//B).

e e .o
.~
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By our definition, a//B does not obey the finite
delay property. It is possible to define a//8 with finite
delay, by insisting that each T and o be finite. We
will sometimes consider this alternate definition of //
in the work that follows.

6. If p is a formula of a certain type, which may
be different for each logic, then p? is a program. The
truth value of p must depend only on a state, When p
is true, p? executes a null transition. When p is
false, p? cannot execute, and so must block.

m(p?) = {(u,<u»su>): p holds in state u}

v {(u,<A+A>): p does not hold in state u}

1.3. Truth in GPL and MPL

The logics GPL and MPL are defined in terms of a Kripke
style truth value semantics. A structure A = (U,ﬂ,@o,¢o)
consists of a set U of states, a process w in N(U), a
set °o of basic formulas or predicates, and an interpre-
tation ¢O=QO*P(U) which assigns to P the set of states
where P holds. The truth value of a formula depends on
a structure, as well as some additional parameters, which
differ slightly between GPL and MPL, mainly because a
GPL formula may have many free variables whose values

must be specified. An environment, or model, contains all

of the information necessary to determine the truth value

of a formula. For each logic, a relation E ¢ P, read

™y
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"E satisfies P," between environments and formulas is

defined. We say that a formula p is satisfiable if there
is some environment E which satisfies P. We say that
p is valid if np is not satisfiable, i.e., if p is

satisfied by every environment.




Chapter 2

Boolean Variables in Propositional Dynamic Logic

A reasonable first approach to dealing with concurrent
programs is simply to add a concurrency operator to an
established sequential program logic, such as Propositional
Dynamic Logic. The semantics of programs may have to be
changed to be able to define the concurrent execution of
two programs. Such a logic would be suitable at least

for describing termination properties of concurrent pro-

grams. (As we show below, it is capable of much more.)
PDL programs are close to regular expressions. It is P3
well known that the shuffle of two regular sets is a

regular set [GS65). Hence it would seem reasonable that,

at least in some cases, the concurrency operator could be

expressed in terms of v, ; and *. That is the case when

i .

basic programs must be indivisible, i.e., every path

F

in ﬂo(A) must have length one.
For the rest of this chapter we adopt the convention

that basic programs are indivisible. 1In this view, basic

programs represent low level instructions, which are
executed in a single step, as opposed to more complex
programs. The restriction to indivisible basic programs
greatly simplifies the study of concurrency, by allowing

us to know just how programs can be interleaved. If A
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and B are two non-indivisible basic programs, it is
difficult to know what A//B will do, given only the
behavior of A and B individually. We are not the first
to restrict basic programs to indivisible actions (see
e.g. [0G76, Pn77, RP80O, N79]).

Infinite paths in 7w (a) can have no bearing on the
truth of [alp, which only states that the finite legal
paths end on a state satisfying p. So eliminating all
infinite paths from all processes can have no effect on
the truth of any PDL formula. Consequently, the two
possible definitions of PDL//, one with finite delay and
the other without finite delay, must in fact be identical.
Until we leave the realm of PDL, we can ignore the gquestion
of finite or infinite delay.

Although concurrency can be eliminated from PDL
programs, the elimination is costly, the best known method
causing a double exponential length blowup. We certainly
would hope for a better method of handling concurrency
than the brute force method of considering all possible
ways of interleaving programs. Such a method does exist.
Suppose we introduce into PDL auxiliary variables, whose
values can be assigned and tested without affecting in
any way the behavior of basic programs. Those variables
could be used to efficiently write an “interpreter,"
which evaluates a concurrent program. By storing one or

more program counters in variables, the interpreter can

e e e

e ——
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remember where one or more programs are at each instant.
The auxiliary variables can also be used to help express
properties other than simple termination properties of
programs. For example, to state that p holds throughout
the execution of o, we simply write [Ia]p, where IOL is
an interpreter for o which may halt at any time during
the evaluation of a.

Below we define an extension B-PDL of PDL which in-
cludes Boolean variables. We list a number of concepts
which B-PDL can simulate. We also show that every B-PDL
formula is equivalent, in a sense defined precisely later,
to some PDL formula. Consequently, any concept which can
be expressed in B-PDL can also be expressed (albeit less
concisely) in PDL. We prove upper and lower bounds on
the time complexity of the satisfiability problem for
B-PDL., A related upper bound naturally applies to any

logic which can be efficiently simulated by B-PDL.

2 . l . B-PDL

We begin by giving formal definitions of sequential
PDL and B-PDL. Because the box operator of PDL only looks
at the first and last states of a path, we can simplify
the semantics of programs, letting each path consist only
of a start state and a final state. A program represents
a set of such paths, which is just a binary relation

over states.

. v
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After defining B-PDL, we show informally that B-PDL
can efficiently simulate certain notions, such as
concurrency, which really require that programs represent
é sets of paths rather than binary relations. Given the
definition in Chapter 1 of w(a), the reader should have
little difficulty in extending our relational definition
of B-PDL to a definition based on processes. A formal
proof that concurrency can be eliminated from B-PDL

formulas naturally must be carried out in a version of

B-PDL which includes concurrency, and whose programs
represent processes rather than relations.
The following definition of PDL is taken from

[FL79]). A PDL structure A = (U, @0, Z . ¢

consists
0 o' po) onsis

of

U = a set of states;

¢° = a set of basic formulas;

zo = a set of basic programs;

L ¢o + P(U), assigning to each basic formula the

state where it holds;

Pos Zo + P(UxU), assigning to each basic program

a binary relation over U.

The programs I, formulas ¢, and their associated
semantics p: I » P(UxU) and ¢: ¢ -+ P(U) are defined

inductively as follows.

- Y
. s o e "5~v-v€j&@$mwt\‘:"vui . 4
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Programs
l. Ac¢ Eo is a program with p(A) = po(A).
2. Let a,B e I, ped.
a) avB e I, plav B) = pla)v p(B);
b) o;8 € I, plaiB) = pla) « 0(B)
(composition of relations);
¢) a* € I, pla*) = p(a)* (reflexive
transitive closure of a
relation);
d) p? € I, p(p?) = {(u,u): ue ¢(p)}.
Formulas
1. Pe ¢0 is a formula, with ¢(P) = ¢O(P).
2. let p,ge ¢, ac I.
a) ~p e &, ¢(vp) = P(U) - ¢(p).
b) pv qe ¢, ¢(pva) = ¢ o(q).
c) <o>p € ¢, ¢(<a>p) = {u: Iv((u,v) € pla)
and v ¢ ¢(p))}.
([a)lp is defined as ~<a>np.) \\\
For a thorough discussion of PDL, see [FL79].‘\Ve
generally write u P p for u € ¢(p). The symbols A,
>, £, etc. have their usual meanings. We remark that
the PDL program constructs can express the usual if-then-
else and while-do constructs, as
if p then a else b = (p?;a) v (p?;:b),
while p do a = (p?;a)*; ~p?.

. ) L
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We proceed now to B-PDL. A B-PDL structure contains,
in addition to all of the members of a PDL structure, a
set V of Boolean variables. 1If x is a Boolean variable,
then x is a formula, and xt(set x) and x+(reset x) are
programs. The truth of a formula depends not only on a
state u, but also on a set s containing the Boolean varia-
bles which are true. Programs of B-PDL represent relations
over Ux P(V), with the basic programs altering only the
first component, and the set and reset programs altering
only the second component. Using separate components
achieves the desired independence of variable actions and
program actions which is necessary to write the sort of
interpreter described earlier. The sets ZB of B-~-PDL
programs and °B of B-PDL formulas, along with their

respective semantics Pyt L. =+ P({(UxP(V))?) and ¢B‘

B
QB + P(Ux P(V)) are defined inductively below.
Programs

l. A ¢ zo is a program in ZB with

oB(A) = {((u,s), (v,s)): (u,v] ¢ oo(A). s eV}

2. Let x e V.

»

a) xt € Ig, pB(x+) = {({u,s8), (u,s°)): s° =
sv {x}};

b) x+ € Ig, pB(x+) = {{(u,8), (u,87)): 8° =
g - {x}).

ST A 3. il SEEC IR S BN VIR NP UREL T RN,
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3. av B, o;B and a* are defined exactly as for
PDL. If p is in OB. then p? is a program, with

pp(P?) = {((u,s), (u,s)): (u,s) ¢ ¢B(p)}.

Formulas

l. Pe¢ ¢o is a formula, with ¢B(P) = oo(P)x P(V).

2. x € V is a formula, with ¢B(x) = Ux {s & V:

X € s}.

3. Let p,qg ¢ oB, a € EB.
a) wp ¢ ¢B’ ¢B(Np) = UxP(V) - ¢g(P);
b) pv gce QB, OB(p\/q) = ¢B(P)u ¢B(Q):
c) <a>p € &5, oy(<a>p) = {(u,s): (Fvedu,

teV) ((u,s),(v,t)) € pgla) and (v,t) ¢ ¢ (P)}.

We write u,skp for (u,s) € ¢B(p). Below is a
list of examples demonstrating the power of B-PDL.

1. Integers in the range of 0 to 2"-1 can be
represented using n Boolean variables. It is routine to
write a program of length 0(n) which adds or subtracts
two such integers, or tests them for equality, or deter-
mines which is larger. Bounded quantification over the
range (O, 2"-1] is expressed as ¥x = [x <« random], where
X « random = (xl&u x1+): eens (X 4V xni).

2. The program an = g; ...; a(n times) can be
abbreviated using Boolean variables, representing integers

up to n, as follows:
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I+« 0;

while I ¥ ndo (a; I « I + 1).
This program has length 2(a) + 0(log n), which may be
considerably shorter than nf(a). The programs x¢, x9¥,
x? and vx? used in the while-loop cannot affect the state
component of (u,s), and so cannot affect the running of
6, so long as none of the variables used to simulate 1
aphears in a.

3. Using small integers, we can convert a flowchart

of n boxes, whose boxes contain basic programs and tests,

to a length 0(n log n + length of all tests) B~PDL progranm.

The program has the form S; (U Ti)*; F?, where S sets a
i
counter to the start box; '1‘i tests if the counter is i,

and if so performs the action in box i, then setting i

to the number of the next box; and F tests for a final box.

The length of the Boolean variable simulation of a flow~
chart is generally much shorter than the standard PDL
simulation, which must be exponential in n in the worst
case, Decidability of PDL with flowchart programs follows
from the decidability of B-PDL. Pratt [Pr80) gives a
single exponential time decision method for PDL with
flowcharts, which is slightly better than that obtainable
from B-PDL.

4. Any length n program can be changed to the form
8; (VU T;)*; F? of example 3, with a factor of ¢ log n

i
length increase for some constant ¢. Simulations below
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make use of this program translation.

5. Subroutine calls to bounded depth, with small
integer parameters, can be simulated in the obvious way.

6. Concurrency can be simulated by allowing more
than one counter to be active at a time. Each pass
selects which counter is to be used, then uses it in the
usual way. The nondeterminism inherent in concurrent
programs is simulated by the nondeterminism which is built
into PDL. This simulation treats basic programs as
indivisible actions.

7. A kind of labeling already is in use. It is a
simple matter to allow syntactic labels in programs, and
to test for being at a given label, or in a given region
(using special binary encodings, which allow for testing
only the most significant bits). We can also test which
program made the last transition, using a backup counter.

8. Global invariance of p over a can be expressed
in B-PDL. If S; ( v Ti)*:F? is an equivalent program to
a, then "p holds th:oughout the execution of a" is
expressed as [S; | p Ti)*]p, where the termination test
has been omitted. ;i executes a single step of «a.

9. We can test whether every possible execution
sequence of a program must obey p while g, which says that,

as long as p holds, q holds. If a is represented by
S; (U Ti)*;r?, then a satisfies p while g provided
i

- ittt ot imaind e 50 i
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51 (a2; U T,)*1(q>p).
i
The two occurrences of q can be reduced to one by the use
of more Boolean variables.
10. B-PDL simulates "p holds at the next instant"

by only running v 'I‘i once. The operator "until" of 5

[GPSS80] is shownlin Chapter 4 to be expressible in terms

of while and "next." Hence in B-PDL we can express that

every path of a satisfies p until q. However, B-PDL

cannot simulate nexted whiles or untils, at least under

!

{
the meaning of [GPSS80]. For each time an "until" simu- k
lation is done, B-PDL requantifies the path in guestion. 3
That is, B-PDL can only simulate branching time modalities, L
in the sense of [L80].

11. Using interpreters, it is possible to "remember"
as program counter from one modality to the next. Con-
sider the statement "a preserves p," i.e., "a never changes
p from true to false." Letting S;( Q Ti)*;F? be an

i
interpreter for a, "a preserves p" can be expressed in B-

PDL as [S)[( \i Ti)*] (p>[( g Ti)*]p). In words, after
a is started and run for some number of steps, if p holds,
then continuing a for any more steps must lead to a state
where p holds. [S]I( U Ti)']p is just an expression of
global invariance. Pritt's process logic (Pr78) includes
a global invariance operator {alp. But {a}(p={alp)

does not express "a preserves p," for the nested {alp
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restarts ao. Pratt's logic, as well as Parikh's SOAPL
(Pa78]) and Nishimura's process logic [N79], have no
obvious means of expressing that a should take up where
it left off.

In {s]lCV Ti)‘]ﬂ>3[( U T,)*]p), we must write
(v Ti)* twice? It would se;m more reasonable to invent
a ;orm such as a+*[)(p 2 [)p), where a+ means [S], and
determines all Ti' and (V Ti)*, or its semantic egqui-
valent, is implicit in eaéh box. Such a form is introduced
in Chapter 5.

B-PDL has been shown to be a rich language, and
merits study. B-PDL is also interesting in its own right
as PDL with very simple assignment programs. The remainder
of this chapter is devoted to proving results about B-PDL.
We begin by proving that Boolean variables can be
eliminated from B-PDL formulas. We then give a character-
ization of B-PDL in terms of PDL, and using it, show
that the satisfiability problem for B-PDL is decidable
in nondeterministic time cn3m. where n is the length of
a formula, and m is the number of distinct Boolean varia-

bles which it contains. Lastly, we prove a deterministic

m
time dnz lower bound on SAT(B-PDL).

2.2. Equivalence of B-PDL and PDL

Since B-PDL formulas can reference Boolean variables,

it is clear that PDL cannot strictly express as much as
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B-PDL. But if the initial values of all of the Boolean

variables are fixed, then we can show that PDL can
express just as much as B-PDL. Precisely, for every set
s of Boolean variables, there is a map Ts from B-PDL i

formulas into PDL formulas for which u,s k p iff u & Ts(p)

for every state u , and every B-PDL formula p.

It is easy to see how to translate a formula of the
form [a]lp to PDL, where a may contain programs of the
form x4, x+¥, x? and “x?, but not arbitrary tests. Begin
by constructing a nondeterministic finite automaton F
equivalent to regular expression a, treating x4, x+, x?
and vx? as symbols of the alphabet. Next, if o contains
m distinct Boolean variables, make 2™ copies of F, one
for each different subset of the Boolean variables. Arcs
labeled x4 and x+ are eliminated by turning them into
A-arcs between copies of F. x? arcs are either turned
into A-arcs or are erased. Finally, the resulting finite
automaton is converted into a regular expression. We see
that, if a is of length n, then the program a“ which we
construct from a has length cn2m for some ¢. The upper

m
bound cn2

is very poor when m=0, in which case our trans-
lation causes an exponential blowup when no change at all
is necessary. Nevertheless, when m is large, we conjec-
ture that the bound is tight. A double exponential lower
bound is proved in [A80) on the length blowup incurred

in translating Boolean variable regular expressions into
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ordinary regular expressions. Hence there is a B-PDL
formula [«)P which is not equivalent to any short PDL
formula of the form [a”]P. That does not preclude the
possibility of a short PDL formula eguivalent to [a]P
which is of some altogether different form. The best
lower bound we can prove is single exponential, resulting
from translating [Ak]p to [A; ...; Alp.

We now describe the translation Ts.

Theorem 2.1. Let p be a B-PDL formula of length n,

containing m distinct Boolean variables Xqo eeer X and

let s be a subset of {xl, cees xm}. There is a map T_:

¢, - & such that for every state u, u,s F p iff u F Ts(p),

B
m
and Ts(p) has length at most O(n + dn2 ), for some d.

Proof. Let i be the kth bit, numbered left to

(k)
right, of the binary representation of i. Let ti be

the conjunction of Boolean variables and their negations
which is true iff Xy eee Xp is the binary representation

of i. Let 5, be the program which sets Xp oo xm to the

integer i. The vector (po, ceen pzm_ll of formulas

2M-1
represents the formula V (tia pi). The matrix
i=0
21 2™
l“ijlzm- oM represents the program ;io ;:o (ti?;

uij; sj). Define the length of a vector or matrix as the

length of its longest component.
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We inductively define translation T which maps every
B-PDL formula into a vector formula whose components
contain no Boolean variables, and which maps every B-PDL
program into a matrix program each of whose components
contains no Boolean variables. Simultaneously we prove
that p = T(p) and p(a) = p(T(a)) in every structure.
Ts(p) is just the component of T(p) in the position

corresponding to s. Let & = M1,

P. T(P) = (P, ..., P}, and P = T(P) is trivial.

X - T(xk) = [qo, ey qzl, where

true if i(k) = ]
qi=

false if 1(k) = (

The proof that X, B T(xk) is trivial.
p. Let T(p) = [po, «ves Pgl. Then

T(wp) =Iw,, «..s 2Pyl

th

We prove by induction on m that m[po, e p2]

[mpo, cees mpgl.
Basis. (m=0). m[po] s [mpo).

Induction. Let I° and I1 be disjoint index sets such
m . . . _
that Iou I1 = {0, ..., 2 -1}, and i ¢ I, iff im = 0.

“pP = AP cees PoM_y]
2™
H i\sll tl‘ Plv

s — L L e
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'\,(('\.xmA V (! AP))v(xmA\/ (t;APi))),

icI 1cI1
2 lxgv vV o (E{ap ) A (ax vV (t7ap))).
m 1 p i
151 1cIl

Each index set I° and Il covers all possible subsets of

Xyr eees ¥p 10 50 V. tlap. and VvV t{ap, are vector

151 1611

formulas. By induction

p = (xmv\/ (t APy ))A('»x v V (t APy )).
1eI 1511

By the tautology (avb) A(rave) = (raab)v (aac),

wE (oA VoA ) v xpa V(e anp)),

1CI 151

[Npo. cees Vpom_, ]

by the choice of the index sets.

pPvgq.- Let T(p) = [po, cees pzl and T(q) =
[qo, ceey qll. Then T(pv q) = [pov Qv sees

Py v qzl, which is easily shown to be correct.

<a>p. Let T(p) = [po, oo pll and T(a) = [ulJ]Z x 2™
then
0 Po
T([G]P) = [313] (v} E ’
Py

the matrix-vector product with + =v and « = ¢, where

O p = <a>p. It is straightforward to show that T(<a>p)

<a>p.
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T is defined below for programs, None of the cases

presents any difficulty, and correctness proofs are

omitted,
A.
A '/
T(A) = ‘. . where ¢ = false?,
%) A
xkf T(xkf) = [Bijlznlxzm, where
true? if Jxy = 1 and
Bij = iy = 3 (n) for all h # k,
false? otherwise.
X, ¥

kY Similar to xk¢.

|

p?. Let T(p) = [po, ey pll. Then
Po? @

T(p)?= . , where @ = false?.

g Py?
avuB. T(avB) = T(a)v T(B) (componentwise union).
a:B. T(a;R) = T(a)(}) T(B) (matrix multiplication).
a*. T(a*) = T(a)*, the reflexive transitive closure

of T(a) with respect to the (;) product.

Length of T(p). The length increase due to the

transitive closure for T(a*) dominates the others by far,
provided the usual algorithm is used to take matrix
products. When k is a power of 2, the transitive closure

of a k x k matrix can be computed recursively by dividing
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the matrix into four square submatrices, and applying the
formula (see [AHU74, p. 205]).

. A B|* (A + BD*C)* (D + CA*B) *CA*

W [C D] B [D*C(A+-BD*C)* (D+ CA*B) *

Let s(k,%) be the length of MiXk where £ is the length of
M (i.e., the length of its longest component). A simple
substitution argument reveals that s(k,%) < &s(k,l).
Let s(k) = s(k,1l). The length of the product of two

kxk matrices of length 2, and 22, taken by the standard

1
multiplication algorithm, is O(k(9.l + 22)). That fact and
the formula for M* lead to

s(k) < 0(k?) + O(k")s(k/2) + O(k*)s(k/2)? for k> 1,
from which it can be shown that

s(k) = o(cX/k*) for some c,

k

<ad for some 4.

Claim. Length (T(a)) and length (T(p)) are both
m
O(dnz ), where n is the length of a (or p), and m>0 is

the number of distinct Boolean variables in a (or p).

Proof. By induction on the length of a or p.
Technically, we must consider each case. Since a*
dominates all others, we show the proof only for a*.

length T(a*) < 8(2", length T(a)),
length T(u)-s(zm).

1A

m .m
c an-1)27 42 by induction,
2m

c a”

1A

P
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The length part of theorem 2.1 follows from the claim,

and separate analysis of the trivial case m=0. |

The test depth of a formula is defined as the depth
of nesting of the "?" operator, with formulas of test
depth zero containing no tests. Let PDLn be the PDL
formulas with test depth at most n. Berman and Peterson
[BP78]) have shown that PDLn+1 is strictly more expressive
than PDLn. We see by inspection that our translation from
B-PDL into PDL does not increase test depth. Hence
B-PDLn+1 is more expressive than B-PDL. That contrasts
with the case of star depth, any program being expressible
with a single star by the use of Boolean variables (except
where stars must be nested solely as a consequence of test
nesting). Cohen [Co70] has shown that regular expressions
require large star depth for full expressive power. We

conjecture that the same holds for PDL.

2.3. A characterization of B=PDL

Rather than defining B-PDL separately from PDL, it is
possible to define B-PDL as ordinary PDL, subject to certain
axioms concerning the behavior of x4 and x{. Axioms Bl-Bd
completely define B-PDL. While Bl-B4 represent a step in
the direction of obtaining a complete axiomatization of
B-PDL, Bl-B4 are not the usual type of axiom, being

inexpressible in PDL. Consequently Bl-B4 can't be directly
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used to either decide or prove the validity of a B-PDL
formula by falling back on the methods used for PDL.
Nevertheless, Bl-B4 can be used to extend theorems about
PDL to B-PDL. 1In Bl-B4, x%* and x¢ are considered special
basic programs associated with the basic formula x. Those
basic formulas which have set and re<et programs associated
with them are called Boolean variables. A PDL structure
which satisfies Bl-B4 is called Boolean with respect to

the set V of Boolean variables and the map which assigns

x4+ and x+ to X, or simply Boolean when V and the

map are understood.

Bl. The following hold at every state, for every

Boolean variable x € 00, and every basic formula or

Boolean variable P ¢ @o - {x}.

a) <x4>true,
b) <x+>true,
c) (x4]x,

a) [x+]nx,

e) P @ [xt])P,

f) P 2 [x¢)P.
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B2. a) uk x = ((u,v) € p(xt) @ u=v),
b) ub v = ((u,v) € p(x+)= u=v).
B3. a) p(xt;x4) = p(x+),

b) p(xi;x4)

p(x4t).

B4. For all A ¢ zo - {x+, x¢ },

a) P(A;xt) P(x4;A),

b) p(A;x4)

P(X4;A).

Bl expresses the behavior of X4 and X+ relative to
the basic formulas (including X), and requires no justi-
fication. It is clear that Bl alone cannot completely
define B-PDL. For if it did, it would be possible to
decide the satisfiability of any B-PDL formula p by merely
conjoining appropriate instances of Bl to p, and testing
whether the result is a satisfiable PDL formula, violating
the lower bound on SAT(B-PDL) which is proved later. B2
and B3 are required to make a reduction of a Boolean
PDL model isomorphic to a corresponding B-PDL model.
Whether B2 and B3 are required to define SAT(B-PDL) is
qguestionable. B4 is a statement of independence of x#
and x+ from every other basic program. It is the indepen-

dent action of x4 and A ¢ {x4,x}) which is difficult to

enforce using only expressions which can be written in PDL.

The following consequences of Bl-B4 will prove useful.
Each is stated and proved only for xt, though dual state-

ments for x+ also hold.

o ‘ S e SR T
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BS5. If u F x then (u,u) € p(x*?).
Proof. Immediate from Bl(a), B2(a). §

B6. Suppose u P vx., Then there is a v # u such that

(u,v) € pixt) and (v,u) € p(x¥).

Proof. By B5 (u,u) e p(x+) = p(xt;x+), which means
there is a v such that (u,v) € p{xt+) and (v,u) € p(xv). By

Bl(¢c), vk x, sOou#v. )

B7. (Determinism) For every u there is at most one

v such that (u,v) € p(xt).

Proof. If u k x, B7 follows immediately from B2.
Suppose u F ax., By B6, there is a v such that (u,v) e p(xt)

and (v,u) € p(x+) and v k x.

(u,v?) € p(xt) D (v,v") £ p(x¥;x4) by (v,u)ep(x+),
= (v,v7) e p(xt) by B3,
> v=yv- by B2, since
v F x. |

B8. (Reversibility) 1If (u,v) € P(xt) and u #¥ v

then (v,u) e P(x+).

Proof. Immediate from B6 and B7.

B9, If Ac zo - {x4,x+) then x ® [A)x and ~x 2 [A]~x.

Proof. We prove x ® [A]lx only.

)
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uk xa(u,v) € p(A) = (u,u) € p(xt) A (u,v) ¢ p(A)
by BS,
= (u,v) € pixt;A),
= (u,v) e p(A;xt) by B4,
D 3 vivi,v) e pixt),
D v Fx by Bl1. @8

Theorem 2.2. Every B-PDL formula with Boolean varjables

V is satisfiable iff it is satisfiable by some Boolean
PDL structure (i.e., one obeying Bl-B4) with Boolean

variables V.

Proof. (=) Given a B-PDL structure R = (U, L

EO.V,¢°,DO) such that 8,u,s F p, define a PDL structure
A= (U x P(V),oo v ViI v {xt,x+: x € v}, ¢8,pé), where
¢; and p; are defined in the obvious way. It is easy to
verify that A satisfies Bl-B4, and that A, (u,s) Pk p.
(&) Suppose A = (U,O°,£°,¢O,Do) obeys Bl-B4, and
A,u kF p. Define the equivalence relation Z over U by
u £ v iff there is a sequence d,, ..., d,, n > 0, of
set and reset programs such that (u,v) €
p(dl: 0003 dn)o
£ is symmetric by B8, and is clearly reflexive and transi-
tive. Define B-PDL structure B = (ﬁ,oo-v,zo-{x+,x+=xcv}.
V.§,:F,) by

us= {v: uzv),

e
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U = {u: u e v}, 1
¢, (P) = {u: ue ¢°(P)}. i;
P (A) = {(U,V): (u,v) € p(A)]. %

ok, FT

Claim. Let S5 = {x € V: u k x}, For all p and qa,
1) A,u k p iff B,E,su k p,

2) (u,v) e pla) iff ((U,S)),(v,S,)) € pla).

P

Once the claim is proved, we are finished proving theorem

-

2.2. The claim is proved by simultaneous induction on

formula and program length. We need a lemma.

&

~ g
i g

Lemma 2.3. If u v and Su = sv then u=v.

Proof. Let R be a sequence of set and reset programs

such that (u,v) € p(R). Using B3 and B4, R can be reduced

e

to contain at most one set or reset program per variable.
If su=sv' the set or reset program for x in R cannot change

the value of x. By repeated application of B2, u=v. §

Proof of Claim. i

Pe 0°-v. A,u F PO ue ¢°(P), f
Sue 3;(P) from Bl(e,f),

(=) BﬁLsuh P.

x ¢ V. A.quc:)uc%(x), i

S xe S, by definition
of Su-
= B,u,S, F x.
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“p, pvq. Trivial,
<a>p. A,u F <a>p&  3Iv((u,v) € pla) A A,v F p),

*) S 3v(((@,s,),(V,s)) € Bla)
u v
A B,v,s_F p)
by induction,
= B,G,Su F <a>p.
Conversely,
B,u,s F <a>p 2 Iv,s(((U,S,),(V,s)) € Bla)
AB,v,s kE p).
It is possible to find v° = v such that §,-= S, by running
appropriate set and reset programs from v,
= 3 v'(((ﬁ,su),(V’,Sv,)) € E(a) A BI;‘ISV’ k P).
= A,u F <a>p by (*).
A¢xt. (u,v) ¢ po(A)
D (u,s),(v,5,)) ¢ oo (A) and s,=S, by B9,
D ((4,5,),(V,S,)) € pg (A).
Conversely,
((u,8,),(V,S,)) € P_(A)

Su=sv and ( 3u’ =z u,v° £ v)((u’,v") € p(A)),

uld

(u,v) ¢ p(Rl:A:RZ) for some sequences Rl.R2

of sets and resets,
(u,v) € p(Rl;Rz;A) by B4,
Jwluzwa(w,v) € p(A)),

USW A sw-sv A(w,v) € p(A) by B9,

118l

(u,v) e p (A) by Su-Sv and lemma 2.3.
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xt.  (u,v) € p(xt) '
= u s vas, = Suu {x} by B9, Bl(c),
= (U, s) . (v, S) € Dixt).
Conversely,
i ((u,8,),(v,5,)) € pixt)

= SV=Suu {x} ~ u=v.

! By Bl(a) there is a w such that (u,w) € p(xt),
! :sw=qu{X}=sv“w=u'
D w=v by lemma 2.3,

= (u,v) € P(xt).

a v B. Trivial.
a;8. (=) Trivial,
(&) f

((@,5,),(V,5,)) € p(a:B)

= 3 w,s(((u,5 )w,s)) € Pla) and ((w,s),(V,S,))

€ P(B)). |

Choose w’ = w such that S, = 8. This is possible by
Bl (a-d). i
3w ((@,s,), @ ,5,.))¢€ Bla) and (W",5,-), (V,5) i
€ p(B)), |
D (u,w’) € pla) (w; v) € p(B) by induction, |

= (u,v) € pla;B)

a*. opla*) = U p(a)®. wWe show by subinduction on n
n
that (u,v) € pla") 1iff ((3, S,), (¥, 5,)) ¢ pla™).

ST e s T e T

n=0. (u,v) € pa®)SHu=v,

|

S ((U,8)),(V,5)) € 5lal),
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n=1., Direct from the main induction hypothesis, for

a is shorter than at*,

n>l. (u,v) € p(a™)

n-1

= 3w((u,w) € p(a) and (w,v) € p(a 1)

= 3w(((u,5,),(w,S,)) € o) and ((w,S),
n—l)

(v,Sv)) £ p(a by the subinduction

hypothesis,
S ((u,8,),(v,8,)) € pa’).
Conversely,
- = n
((u,8,),(v,8,)) e pla’)
ﬁ (BW,S)(((G,SU),(G'S)) € p(a) and

n-1

((w,s) (V,8,)) € p(a” ).

Choose w° = w such that Sw, = s. Then

3w (((U,8,),(w",5,-)) € plo) and

—~a - n-1
((w 'sw')r(vl sV)) £ pla )

D Jw ((u,w’) € pla) and (w”,v) ¢ 0 (™ 1Y)

by the subinduction

hypothesis,

= (u,v) € pla™).

p2. (u,v) € p(p?)
& u=vand uk p,

B e pp———
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& u=v and G,Su F p by induction,

= ((E.su),(V,sv)) e pi(p?)

Conversely,
((u,8),(V,S,) ¢ p(p?)
= u = v and s, = S, and E,suh P,
= u = v and G,Suhp by lemma 2.3,
= u=vand ubkp by induction
= (u,v) ¢ p(p?). ]

2.4. An upper bound on the complexity of B-PDL

By virtue of theorem 2.1 we already have a method Bf
deciding satisfiability of B-PDL formulas: translate to
PDL, and apply Fishcer and Ladner’'s ([FL79] decision pro-
cedure for PDL. The resulting procedure requires nondeter-
ministic triple exponential time in the worst case. We
show here that we can do better by one exponential. 1In the
next section we prove a deterministic double exponential
time lower bound for B-PDL, indicating that further
improvement of the upper bound is limited to making it
deterministic instead of nondetemrministic.

We extend Fischer and Ladner's proof of the decida-
bility of PDL to Boolean PDL. By theorem 2.2, our decision
method also works for B~PDL. A direct proof is also possible, follow-
ing very closely the proof for PDL.

In outline, Fischer and ladner's proof goes as follows: Given

a model A satisfying P, we define a new model X whose states
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are equivalence classes of states of A under a certain
equivalence relation. A is shown to have a bounded number
of states, and to satisfy p. A decision procedure for PDL
is to guess a model of bounded size, and to test whether
it satisfies p.

To extend the method to Boolean PDL, we must only show
that A is Boolean, provided A is Boolean. 1In order to
make A Boolean, we must strengthen the equivalence rela-
tion used by Fischer and Ladner. In so doing, we create
more equivalence classes, and so increase the time required

to decide p.

Theorem 2.4. Let p have length n and contain m

distinct Boolean variables. Given any structure A =
(U,oo,zo,¢o.po) satisfying p at some state u, and which is
Boolean w.r.t. to variable set V & oo, there is a struc-
ture A = (3,00,20,33,3;) which satisfies p at state u, and
which is Boolean w.r.t. to V, and which has at most

n3m
c states for some constant c.

Proof. Following Fischer and Ladner, we define the
closure cl(p) of a formula p to be the smallest set satis-
fying the following:

l1. pecl(p).

2, pvagecl(p)= pqe clipl.

3. apecl(p)=>pe clip).
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3 . 4. <A>p £ cl(p) = p € cl(p) for A ¢ Ioe
}; 5. <g?>p € cl(p) = q,p € cl(p).
% 6. <av B> p € cl(p) > <a>p,<B>p,p € cl(p).

7. <a;B>p € cl(p) = <a><B>p,<B>p € cl(p).
‘ B. <a*>p £ cl(p) = <a><a*>p,p € cl{p).

Fischer and Ladner show that if p has length n, then cl(p)

has at most n members. Their equivalence relation over U
is defined by uElv iff (Vgecl(p))(ukgiff v Fqg).

We strengthen that equivalence relation to

uz.v iff ( Vq e ecl(p)(u k g iff v F q)

2

where ecl(p), the extended closure of p, is defined as

follows:

let D = {dl: cee} dm: di is either xif or xi+ or

is missing, for i=1, ..., m}. D has 3™ members.

ecl(p) = {<d>q: q € cl(p), @ e D}.

By definition, <A>p is p.

Define A = (5,00,20.35,55) as follows:

us {v: uzzv};

= {u: u ¢ U};

cl

$°(p) = {u: uk P);

E&(A) = {(u,V): (u,v) e p (A)).
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By the fact that ecl(p) has at most n3™ members, we

m
see that U has at most 2™ members.

Lemma 2.5. For all q € ecl(p), A,u Fgq iff X,u
F qg.

Proof. Fischer and Ladner prove lemma 2.5 for all
q € cl(p) based on the weaker relation El. Their proof
works for any stronger equivalence relation. Lemma 2.5

is extended to ecl(p) as follows:

u k <dyi ...7 dp>q
= 3V e VUV € pid)) A A (V0 )
e pld)avy, F q),
= (3 Vie eeer V) UV € DA At A (Vg _q0vy)
€ p(d) A Vi FQ)
by lemma 2.5 for cl(p),
= uF <dy; ... 4> g

Conversely, suppose u k< d,; ...; @ > q. Then there
must be a chain u 2 vy > w; 2V, > .. Wy 2V W,
where arrows mean (Vi'wi) € ﬁ(di), and Qk E g. By lemma
2.5 for cl(p), Wy E g. Hence Vi E <dk> g. Since <dk>q
is in ecl(p), and Wi-1 s Vir Wiy 1 <dk>q. Repeating that

reasoning, we see that u k <d1; oo} dk>q. |
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All that is left is to show that A obeys B1-B4.

may assume without loss of generality that every member

of ¢o appears in p. Then cl(p) contains every member

of 'PO. Let = be =5-

Bl.

—

a) For every u,
3v((u,v) € p(xt)) by Bl(a) in A,
= (4,v) e p(xt).

b) Dual to (a).

c) (u,v) e p(xt)
= ( Ju” = u,v’ = v)((u',v") e p(xt))
= V' =vand v’ F x by Bl(c) in A,
= VvV FEx by lemma 2.5.

d) Dual to (c).

e) (u,V) € p(x4) and u kb P
=D (3Ju =u,v =v)((u,v’) e p(xt)
and u‘kF P) by lemma 2.5,
D V- =vand v'E p by Bl(e) in A,
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> veP by lemma 2.5,
f) Dual to (e).
B2. We verify part (a) only.
u k x and (u,v) € p(xt)

=2 (Fu” = u,v’

"

v)((u”,v7) € p(xt) and

u’ bk x) by lemma 2.5,
2 u =v by B2 in A,
=2 u=u =V =v.
B3. We verify part (a) only. Consider a state u.
We show that (u,v) € p(x+¥) iff (u,v) € p(x4;x+). There
are two cases.
Case 1. (u F x).
u kx and (u,v) € p(x¥)
= (u,u) € p(x*) and (u,v) € p(x+)
by B5 in &,
= (u,v) €& p(xt;x+).
Conversely,
u bk x and (u,v) € p(x4;x+¥)
= 3w((u,w) € p(xt) and (w,V) € P(x})),
D w=au by B2 in &,

= (u,v) € p(x+).
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Case 2. (u F ~x )

(W,v) € p(x¥) A u F x

G=.\7AG'='MX
u F

(u,u) e p(x¥)

¢ ¥ ¥ U

(u,u) € p(xt;x¥y)
> 3 w({u,w) € p{xt) and (w,u)

> 3 w((u,w) € p(x?) and (w,0)

> (u,u) € p(x4;x¥),
4 (u,v) € p(xt;x¥).

by B2 in

by lemma 2.5,

by B5 in

by B3 in

€ pix¥}),

€ pix¥)),

by u

"
<1

A,

A,

A,




49

For the converse we need to prove a lemma.

Lemma 2.6. Let d be either xt or x+. If (u,v) € p(4d)

and (u,w) € p(d) then v = w,

Lemma 2.6 is a statement of determinism of x% and xi¢

in X. We can't use B7 directly, since the proof of B7

used B3.

Proof. We show that, for every q € ecl(p), Vv F g
& Uk <d>g¢ w k g, thus showing that v = w. By symmetry
we need only show v F g u F <d>q.

(=) VEQ U F <d>q because (u,v} € p(d).

(&) suppose uk<d>g. For any q in ecl(p) it is
easy to show that a formula which is equivalent to <d>q in all
Boolean models is also in ecl(p). By that fact and lemma 2.5 we have

u k <d>qg,

= u Fk [d]g by determinism of d in A,

= Vvi((u,v’) e p(@)DVEQ),

= Vvi(lu,v’) e PA) DV Ek Q) by lemma 2.5.

But there is a v = v such that (u,v”") ¢ p(d), so v=v'F q. §

To continue the proof of B3, suppose (u,Vv) € p(xt:xi)
and U F Ax. Then there must be a w such that (u,w) € p(x*)
and (w,V) € p(x+). By the definition of p, there must be

u, zu, W 2w, W, £ w and \£ 2 v such that (ul,wl) £ pixt)

and (w2'v2) € p(x+). By B6 in A there is a wy ¥ u such that

» "

/.
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(u,wy) € p(xt) and (wy,u) € p(x+). Similarly there is a
vy such that (w3,v3) € p(xt). Taking each known member
of r(x%) and p(x+) into its bar gives

(u,wy) € pixt),

(uy,wy) € pixt),

(32,62) € p(x+),

(G3,G) € p(x+¥),

(w3,v3) € p(x¥).

By lemma 2.6 and the fact that u = GI, we get W, = 33.

By another application of lemma 2.6, using w = Wl =W, =

53, we get v = ;2 = 73 = u. By B5 in A, (U,V) € p(x+).

B4. We verify (a) only. Suppose (u,v) e p (A;xt).
Then there must be u” =z u, w*, w2 = w* and v°° = v such
that
(uw,w?) e p (),
(w”2,v°°) & p(xt).
By Bl(a) in A, we can find v’ such that (w",v") e p(xt).

-_—an

By determinism of xt in X, V° = V"= V.

(u”,w?) ¢ p(A) and (W",v7) € px4)

(u’,v°) € p(A;x4),

(u’,v°) ¢ p(x4;A) by B4 in A,
3z((u,2) ¢ p(xt) and (2,v7) € p(A)),

3 Z((W,Z) ¢ p(x+) and (Z,V") € p(A)),

uygyguyy

(W*,v") e P (x+;A),

oy L L 5 ;"'J(v.ﬂiwfviqu” & """3

o

- -
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= (u,v) € pi(xt;A).
The converse is proved in a similar manner. Its proof is
omitted. :
t This concludes the proof that A is Boolean, and the

proof of theorem 2.4. ' '

JRgr 3555 LS B

Theorem 2.7. There is an algorithm which recognizes

\
n3" f
SAT (B-PDL) and which runs in time at most c¢ on an input of

length n containing n distinct Boolean variables, for some i

s b TP,

constant c. i

Proof. A decision procedure for B-PDL can guess a
m
3 , where d is the constant of

s

structure of size at most dn

theorem 2.4. It is left to the reader to verify that it is
possible to test that the structure is Boolean and that it
satisfies p in time polynomial in the number of states in A
the structure. The running time of this algorithm is

kn3™ k ' :

d for some k. Let c = 4",

The procedure just presented has two serious short- X
comings. For one thing, it is nondeterministic. A deter- f
ministic procedure based on it would have a longer running
time by an exponential. For another, it takes the worst
case time on all formulas. Pratt [Pr78] presents a tableau
method for PDL which is deterministic and which takes far f
less than the worst case time on some inputs. The tableau i

method constructs a model for p, as our method does, but
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instead of blindly searching for a model, the tableau method
uses p to guide the construction of a model for p. It
appears that conditions Bl1-B4 can be enforced on the model
without affecting the rest of the construction procedure.
When Pratt’'s method calls for the creation of a new state,
the extension to Boolean PDL creates 2" new states, as-
sociating a different subset of Boolean variables with
each. We do not go into detail here on the extension of
Pratt's tableau method for Boolean PDL, or attempt to prove

the method correct.

2.5 A lower bound for B-PDL

This section is devoted to proving that SAT(B-PDL)
is not solvable in deterministic time anm for some
constant ¢ > 1. The proof follows that of Fischer and Lad-
ner for PDL. An outline of the method of proof is as
follows: We show that B-PDL formulas can efficiently
simulate computations of an n2" space bounded alternating
Turing Machine, thus proving that SAT(B-PDL)is at least
as difficult as the acceptance problem for such machines,
By results of Chandra and Stockmeyer [CS76] and Kozen (Ko76]
we can translate an alternating space bound into a deter-
ministic time bound one exponential larger. 1In order to

complete the proof, we need a result of abstract complexity

theory which amounts to a compression theorem for functions

-
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R { of several variables. As we are not aware of such a (%
theorem in the literature, we prove it here.

' For completeness, we give a definition of an alter- ;i
nating Turing Machine, taken from [FL79). A one-tape ATM :j
is a seven-tuple M = (Q,A,r,b,é,qo,U) where Eé

Q is a set of states, ?é

A is the input alphabet, t*

' is the tape alphabet, ;

be T - 4 is the blank symbol, v

6§ &€ (QxT) x (@ xT x {L,R}) is the next move
relation,

U< Q is the set of universal states,

E =0 - U is the set of existential states.

A configuration is a member of I'* Q F+. A universal

configuration is a member of T* U r*, and an existential

configuration is a member of T* E I'. B = x°q°0’y” is a

next configuration of a = x g o y if for some 1 ¢ T,

either
1) (q,0,9°,7,L) € 6§ and x“0” = x and y~ = 1y,
or
2) (g,0,9°,7,R) ¢ 6§ and x”“ = x1 and 0"y = y or
(y=y = Aand ¢” = b).

A computation sequence is a sequence Bye ooer Oy of

configurations, where %41 is a next configuration of oy
for 1<i<k. A trace of M is a set C of pairs (a,t), where

a is a configuration and t ¢ N, such that

e e ew . oS i:o‘u\‘h{é‘ﬂ,k’,‘_,*‘v;: -




- e e —

gx\«x

54
1) if (a,t) €¢ C and a is a universal configuration,
then for every next configuration 8 of a, there is a

t“<t for which (g,t") ¢ C;

2) if (a,t) € C and o is an existential configuration,
then there is some next configuration 8 of a and t <t
for which (B,t”) ¢ C.

The set accepted by M is
L(M) = {x ¢ A*: there is a trace C of M and a
t e N such that (qx.t) € C}.
Machine M accepts x in space s if there is a trace of
M containing g Xy each of whose configurations uses at

most s tape cells.

Definition. (Fischer and lLadner) A simplified
trace is a set of configurations which is equal to the

set of first components of some trace.

Lemma 2.9. (Fischer and Ladner). If M never repeats
a configuration, thenL(M) = {x ¢ A*: there is a simplified

trace of M which contains qos}. |

We now show that B-PDL can efficiently simulate space
bounded alternating Turing machines. Let <n,m> be a

standard encoding of the pair (n,m) in alphabet A.

Lemma 2.10. Let K ¢ A* be accepted by an alternating
Turing machine M which accepts every <n,m> ¢ K in space

n2™ There is a mapping £ from A* into B-PDL formulas such
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that for every pair <n,m>,
i) <n,m> ¢ K iff f(<n,m>) is satisfiable,
ii) f(<n,m>) has length O(n+m) and contains

O(m) distinct Boolean variables,
iii) f(<n,m>) is computable in time polynomial in

n+m,

Proof. We may assume without loss of generality that

M never repeats a configuration on any computation sequence;

om
bounds the number

for there must be some j such that jn
of configurations of M. We can construct a new machine
M”“ which on input <n,m> maintains a count on a new track,
in j-ary, of the number of moves which M has made. M~

accepts <n,m> in space n2™ iff M does so. By lemma 2.8,

we need only consider simplified traces of M~.

A PDL structure represents an n2™ space bounded

simplified trace as follows: A configuration is represented

as a chain of m2™ states, linked by basic program A.

th state in a

Each state holds [n/ml tape cells. The i
chain satisfies basic formula Pg or Hj’ respectively, if
tape cell i In/m]l +3 contains ¢ or the head is reading cell
ifn/ml +j, respectively for s ¢ T, j =0, ..., h/m-1,
i=0, ..., m2™-1, Formula Qq, for q ¢ Q, holds at

the first state of the chain if the associated configura-

tion is in state g. The "next move" relation between

configurations is represented by basic program N, which

e L e
e aea W

Py

£ Al
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operates at the first state of a chain.

Before defining f(<n,m>), we define some abbreviations.
Let Yye seer Yy k = rlog(m2mﬂ , be distinct Boolean
variables. Yyr ece0 Yy represent an integer y in the range
(o, m2"-1].

1. The following programs can be simulated by length
O(m) programs:

a) y= 0?

b) y « y-1 mod m2"7,

2. oY can be simulated by a program of length
O(m + ¢(a)).

3. y « random = (ylfu Yi¥)i eooi (yptuyd).

Bounded quantification is simulated by

fy « random],

vy

it

Jy = <y <« random>.

Formulas gl-~g7 force a structure to represent a
simplified trace.
gl. Every tape cell is present.
[A*]<A>true
g2. There is exactly one state,
Vo, a /\ ng_.)
qee ¥ g¥q 9
g3. There is exactly one character per cell, and it

is well defined,

1
.
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rn/m'1 -1 [n/m" -1
(a*] AV (oa A A Yy A A
=0 oeT 0 “¥o 3=0 ocT

y y
((aY1p_ v [AY)1p ).

g4. There is exactly one head position, and it is

well defined.

[n/ml -1 [n/ml -1
at> /(oA A AR \/ H. D [A3A%)
=0 I g3 <o )
In/ml-1 h/ml -1
A ~HD)AYy A ([AYIH, v [AY)AH)) .
3=0 J j=0 J J

g5. The universal states behave correctly. Let

H, if § < In/ml-1,
MOVER = { j+1
y # m2"-1 A<Ay+l>Ho if 3 = [n/ml-1,
Hj-l if § # 0,
MOVEL =
y-1 . —
y # 0 A<A >th/m7—l if 3 0.
h/ml -1
Yy A A /\(Q A<Ay>(PJAH) >
j=0 -oel qelU
\ Y.pJ
(q,'o, <N>(MOVERAQq, A <A >Po.)

(q.o.q'.o'.R)c )
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N\ <N> (MOVEL a Qg - » <AY>pg,)),

g ,©
(q,0,9",0%,L1e 8

A

(Empty conjunctions are defined to be true.)

al.

similar to gb.

Let <n,m> = 0y - Oy * The initial

configuration g <n,m> is enforced by

m/m! -1 _
h=o alVy <mk/m) A <a¥>p] .
95 j=o fn/m y+3

Finally, define

The existential states behave correctly.




y 59

it

f(<n,m>) h a [N*}(gl Aces A g7).

f(<n,m>) satisfies conditions (ii) and (ijii) by inspec-
tion. Given a simplified trace of M on input <n,m> using
space n2™ it should be clear how to construct a model which
satisfies f{(<n,m>). Conversely, given A,uo E f(<n,m>) we
can find a simplified trace for M on x. The g formulas
are sufficient to ensure that there is a configuration

associated with each state accessible from u_ by N*, The

o
g conditions also ensure that, at least for some subset
Uo of the states U of A, the set of configurations asso-
ciated with members of v, form a simplified trace of M

which accepts <n,m>. Details of the proof are omitted. 8

A compression theorem

Theorem 2.12 is the compression theorem which we

require to finish the lower bound proof.

befinition. (xl, coey xn) < (yl, oo yn) iff

xl < yl Aceoh X < Yn*

Lemma 2.11. Let S ¢ Nn, and suppose that no two

elements of S are comparable by <. Then S is finite.
Proof. We prove a stronger form.

Claim. Let Oikin, and let S & Nn be such that no

two elements are comparable, but all elements are compar-

e .
o L Y ~
-

b

-
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able in their first k positions (i.e., if (ul, ceey uk,
oot un) and (ui, ooy ui, e u;) are both in §, then

either (u;, ..., u ) < (U, ..., u) or (ul, ceer uy)

< (ul, cees uk)). Then § is finite.

Proof of claim. By induction on n-k.

Let x = (xl, covn Xy e xn) € S be chosen with minimal
(xl, ey xk). Such an element exists by the total order
assumption on the first k positions. For every u =

(ul, caayg un) € S not equal to x, there must be an i,k<i<n,
for which ui<xi, for otherwise u and x would be comparable.
We count the members of S with u;= v separately for each
v<x;. We may assume without loss of generality that

i = k+l1, otherwise reordering the components. Let

SV = {(ul, .eoys un) € S: u, = v}.

The first k+l positions of s, are totally ordered, and

no two elements of Sv are comparable. Hence sv is finite
n .

by induction. Finally, [s| < I 1
i=k+l v=1

finite. |

[ 1

|sv|, which is

Theorem 2.12. (Fischer) Let t(nl, ceey nk) 2 n, + ...

+ n, be a recursive, honest function (computable in time

k
polynomial in t). There exists a set X such that for

every deterministic Turing machine M accepting X, M runs

for time at least t(nl, aves "k) on input SRjrecey M2 for all
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but finitely many values of n n Moreover, there

l' e e oy k-
is a deterministic machine Mo which accepts X, and which

c’ .
takes at most cnl...nk(nl + ... + nk)t(nl, ceey nk) time

on input SNps eees N2 for some constants ¢ and c”’.

Proof. For clarity we prove theorem 2.12 for functions
of two variables. The extension to k variables is
straightforward. We use a priority argument. Let the
deterministic machines be ordered in the usual manner, and

th machine. We define

let L(e) be the set accepted by the e
X by describing machine Mo which accepts X. On an input
which is not an ordered pair, M halts and does not accept.
On input <n,m>, Mo runs stage (i,j) for all (i,3) < (n,m)
in an order consistent with the partial order <, starting
with (0,0). Each stage produces a value and a cancellation
list. <n,m> is accepted if stage (n,m) returns value 1.

Stage (n,m). Let C = v C(i,j)., where

(i,3)
(i,3) < (n,m)

C(i,j) is the cancellation list of stage (i,j). Let t =
t(n,m). Run each of the first n+m machines for at most
t steps on input <n,m>, Let e be the first machine to halt.
(I1f no such e exists, set C(n,m) = C and return 0). Let

C(n,m) = Cv {e}, and return 1 if and only if e does not

accept <n,m>.
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Suppose L(e) = X, Then e is never cancelled,
Every e” < e is cancelled during stage (i,j) for only

finitely many values of i and j. To see this, let

Se, = {(i,j): e” is cancelled during stage (i,j)}.

Clearly, if (i,3j) ¢ Se,, then (n,m) ¢ se‘ for any (n,m)

> (i,3), for e” will be in the set C computed at stage
(n,m). Hence, the elements of Se, are pairwise incompara-
ble, and Se’ is finite by lemma 2.11, Let

q = max({n+m: (n,m) e U S _.}u{e}).

e‘<e
For every (n,m) with n+m>qg, it must be the case that machine
e runs for more than t(n,m) steps on input <n,m>, otherwise
e would have been cancelled at stage (n,m). Hence e runs
for more than t(n,m) steps for all but the finitely many
values of <n,m> for which n+m < q.

Machine Mo computing X runs in time at most nem.(time
per stage) on input <n,m>. There are at most n+m machines
to simulate at each stage, and each can be simulated in
time O(t log t). The time to compute t is 0(t° ) by the
honesty of t. Putting this together gives the time bound

for M- ]

We require an extension of the result of Chandra
and Stockmeyer [CS76] and Kozen {Ko76] relating alternating

space to deterministic time. Their theorem states that
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ASPACE(s(n)) = U DTIME(c® (n)) for any suitably honest s.
c>0
The proof relies on a simulation of each type of machine by

the other, and is easily extended to several variables.

Theorem 2.13. lLet s(nl, caes nk) be constructable. Given any
alternating Turing machine M which runs in space s(nl, cees nk) on
input Dyroeeeq D> there is a deterministic Turing machine M
accepting L(M) which runs in time c® (nl’ Tt nk) for same constant c.
Conversely, given deteministic machine M running in time
cS(nl' T nk) aon input SUTIERRTIR U there is an alternating
Turing machine M accepting L(M”} which runs in space s(nl, . nk)

on input <nl, ceer M.
We are ready to prove the lower bound for B-PDL.

Theorem 2.14. (Fischer). let M be any machine accepting SAT
(B~PDL). Then there are constants d and d” such that for all but
finitely many values of n and m there is a formula Fn m of length

at most (n+m) containing at most m distinct Boolean variables, on

am

which M runs for more than Zdnz steps.

zn -
Proof. let t(n,m) = 22 ang tz(n,m) = mn(n-nn)t(n,m)c '

vwhere c and c” are the constants of theorem 2.12. There is a constant
b such that t,(n,m) < zhnzm. Let X be the set of theorem 2.12.

By theorem 2.13, there is an alternating machine A accepting X which
runs in space n?" on input <n,m>. Lemma 2.10 asserts the existence of

a formula Gn of length at most cl(n+m) with at most

m

e e

e
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czm Boolean variables such that Gn m is satisfiable iff <n,m> ¢ X.
’

Moreover, Gn,m can be found in time (n+m)k. Hence, the following is a

Pprocedure for accepting X.

l. Given <n,m>, construct Gn m*
1

2. Test if Gn m is satisfiable by running M. 1If
’

so, accept <n,m>, elsereject <n,m>,

Let T(n,m) be the time M spends to decide G Then

n,m’

the above procedure accepts X in time (n+m)k + T(n,m).
By choice of X, (n+m)* + T(n,m) > t(n,m) for all but

finitely many values of n and m. Hence there is a constant

m
e such that T(n,m) > 2en2 . Let c = max(cl,cz), and

let Fn,m = Glﬂylmjo Fn,m has length at most n+m and
clic

contains at most m Boolean variables. M decides Fn m in
’

. n 2[EJ a’
time T(lgj,[gj) > 2elc‘l © > 2dn2 " for some d and 4,

for all sufficiently large n and m. |

2.6. Multiple variable complexity bounds

In proving a lower bound for B-PDL which has nearly
the same form as our upper bound, both being functions of
n and m, we have demonstrated both the desirability and
feasibility of proving bounds which are functions of more
than just the length of the input. For most problems,

some inputs are easier than others. For some, such as

) e g
e }-.v;w‘.:xs'«.t L
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SAT (B~-PDL), there are natural parameters of the input which
appear in tight complexity bounds. Another example of
such a problem is the not-everything problem for

extended regular expressions [St75], which is decidable in

cn
.'2 §m+l
time 22 for expressions of length n with m

.2°1”}

2.' c,n
complement symbols, as opposed to 2 when m
is left unspecified.

In our compression theorem we consider only inputs
which are ordered pairs, showing that, even when inputs
are restricted to ordered pairs, there are arbitrarily hard
problems. For proving lower bounds, that is enough, and
it results in a fairly clean proof. 1In general, though,
a complexity bound is a function t(x) of the input, which
might have the form t(n(x)) or t(n(x),m(x})), where n and
m are simple functions of the input, such as its length.
There is a need for a theory of more general complexity

bounds that the traditional ones which depend only on the

length of the input.

2.7. Conclusion

By showing that B-PDL is decidable, we have shown that
PDL with any or all of the following extensions is
decidable, provided basic programs represent indivisible

actions: concurrency, assignment and quantification over
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. e

bounded integers, gotos, labeled programs with formulas
having access to labels, global invariance, "preserves,"
while and until (unnested). By the fact that B-PDL is '
no more expressive than PDL, we find that all of the above
concepts can be simulated in PDL. We can view that fact .5

two ways. One way is to view PDL as a surprisingly rich

language. Another view is that any language which hopes to
be more powerful than PDL must be able to express more than

the above, or to deal with basic programs which are not

indivisible. | 3
One way to handle concurrency is by the brute force ?

method of trying all possible interleavings. Owicki [0G76]

presents a proof system for proving partial correctness

which permits reasoning without considering all possible

interleavings. The B-PDL simulation of concurrency also

permits a more efficient way of handling concurrency than considering

all possible interleavings, Improved efficiency results due to the !

exponential gap between our decision method for B-PDL and the naive

N

method of translating fram B-PDL into PDL, and then deciding the

resulting PDL formula.

It would seem a reasonable criterion of any logic of
concurrent programs that it be capable of dealing with
concurrency with more finesse than can be achieved by
reducing concurrent programs to while (or PDL) programs.
For otherwise we might as well just use PDL to begin with.

This observation applies equally well to decision

ot R Fed S
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procedures and proof systems. Any axiom system for F

.
>

PDL// which ultimately relies on reducing away concurrency
by expressing it in terms of v, ; and * (such systems have
been shown to us more than once) is misguided.

It is an open problem to find a complete proof system

for B-PDL. By the remarks above, an acceptable system

S e
bbb e e K -

would not rely on a costly elimination of Boolean variables.
We have remarked that the axioms of condition Bl cannot form
a complete axiomatization of B-PDL, when added to a system t
for PDL. Any system for B-PDL must somehow express the

independence of x4 and other basic programs. r

s e

-, -~ : o kel AR R




Chapter 3

A General Process Logic

In this chapter we describe a logic GPL in which
variables and quantifiers are used to express properties
of a given process n. By excluding programs from the
syntax of GPL, we greatly simplify our analysis. Valid
sentences of GPL are those which every process must obey,
rather than those which some particular, potentially
very complicated program must obey. It is possible to
add programs to GPL, by adding new predicates.

GPL with programs is very similar to a version of Parikh's
Second Order Process Logic (SOPL), in which first order
quantifiers range over occurrences of states rather than
over states. 1In contrast to standard SOPL, which is
undecidable by Parikh [Pa78], we do not know whether GPL
is decidable. However, we give two restrictions of GPL,
each of which is decidable. The first is a semantic
restriction, in which processes are required to be closed,
in the sense that any path which can be followed arbitra-
rily long can also be followed infinitely long., 1In

other words, processes must exhibit bounded nondeterminism.

The second restriction of GPL is syntactic, and is shown in
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. Chapter 4 to be very nearly expressively eguivalent to the !
modal logic MPL. The theories of GPL and both of its

restrictions are nonelementary.

3.1. Introduction

Many statements which we wish to make about processes !
concern the order of events on paths. A simple example
is global invariance: at every time instant t, P(t) holds. '
For another example, suppose that P(t) represents a message
sent at time t, and Q(t) is an acknowledgement. We may ;
require that 1) for every time instant t, if P(t) holds,

then there is a later time t“ when Q(t”) holds, and 2)

for every time instant t for which Q(t) holds, there is a
previous time t° when P(t”) holds. The predicate calculus
of an order immediatelx volunteers itself as a process
logic. The parts of such a process logic are as follows:
l. Variables are called stage variables. A stage,
or a time, is a finite path, which gives the history of
a computation. Because it is impossible for a computation
to proceed beyond a block, stage variables must range only
over legal sequences.
2. 8 < t, where s and t are stage variables, is a
formula. 1In terms of paths, < is simply the prefix 4
relation.

3. P(t), where Pcoo is a basic predicate,
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is a formula. The truth value of P(t) depends only on
the final state of t,.

We generally want to make statements about the paths

in some set m. For example, to state that P(t) is globally

invariant over m, we would say that, for every path h in
n, and every stage t on h, P(t) holds. GPL must have some
means of quantifying h, and selecting t on h, There are
two obvious methods which we could use.

1. h can be specified implicitly by the semantics,
either by letting h be a part of the environment, or by
implicitly universally quantifying h before every formula.
These approaches are taken in [Pn77,Pn79,GPSS80].

2. We can introduce variables which range over
paths, and write "t on h" explicity as t < h.

Below we show that the first approach is inadequate;
hence we choose the second. Path variables and stage
variables both range over paths, so we could get by with
a single type of variable, along with some additional
predicates such as legal (x). Harel et al. [HKP80] seem

convinced that a single type of variable is better than

two, and define a logic based on a single type of variable.

However, path variables and stage variables really have
different purposes. Natural restrictions are easily
expressed in terms of the two different types of variable.
Therefore we choose to define path variables separately

from stage variables,

. _1- ‘ .,.
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l. Path variables range over paths in 7. In order
to allow for the possibility of diverging or blocking,
we must allow path variables to range over infinite and
illegal paths as well as terminating paths.

2, t < h is a formula, for t a stage variable and h
a path variable. (t < s is still allowed).

Informal specification of the logic GPL is almost camlete.
(A caplete formal specification is given in section 3.2.) There
is still one serious hole which needs filling. In the language given
so far, while it is possible to state that path h can make no more
progress at stage t, as (t < haVs(s<h > s<t)), it is impossible
to distinguish a path which is blocked at stage t from one which
is terminated at stage t. We introduce the formula H(t,h} which
means path h is teminated (or halted) at stage t. In terms of
paths, H is just the equality predicate, We prefer H to = for the
reasons that the parameters are of different types, and that H(t,h)
corresponds to the atomic formula H of MPL.

Why path variables?

The subset TL of GPL without path variables or blocked
paths has been studied as a viable process logic by
Pnueli and Gabbay, et al. [Pn77,GPSS80] who show it capable
of expressing a number of significant properties of
processes, However, there are some important properties
of processes which appear to be expressible only by using

path variables. Some, such as the absence of deadlock,
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depend on the existence of blocked paths, which most other’

authors have not considered (see Pratt [Pr78] for an
exception). Others are more basic.

1., The fundamental property of global invariance,
GI(p) = (Vhem) (V t<h)p(t)

depends at least on a single universally quantified path
variable. The approach of letting the path be part of a
model is not suitable to describing processes which are
sets of paths. The alternative approach of implicitly
prefixing every formula by (V hern), and permitting no
further quantification of path variables, results in a
logic which is not closed under semantic negation, for
the negation of GI(p) begins (3 hem) ... In such a system it is pos-
sible for both p and wp to fail to hold in a given model. It is out
of the question to attempt to disprove a property when we can't even
state its negation. Furthermore, an algorithm for deciding satisfia-

bility of a system which is not closed under semantic negation does

not immediately extend to deciding validity the way it does for logics

which are closed under negation.

2. There are really two different notions of the

"future" at a given stage 1. One is the linear, determined

future on a given path, or the future as it will happen.
The other is the branching, undetermined future of all
paths of which 1 is a prefix, or the future as it might

happen. Lamport [L80) shows that neither notion

e A bt e mren s e e
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of future is definable in terms of the other. Lamport ar-
gues that the linear notion of future is more appropriate
for reasoning about concurrent processes, while the branch-
ing notion is more appropriate for reasoning about sequen-
tial processes (e.g., PDL uses branching futures).

{(We find neither completely adequate.) Since our syster
is to treat sequential and concurrent processes uniformly,

L we require both notions of future. "Throughout the future

from time t" is expressed as Vs(t<s<h 2...) in the linear casc,
and (Vhx)Vs(t<s<h ... ) in the branching case.

3. We mentioned in Chapter 1 that we would give the
writer of formulas the power to be his own oracle, making
choices when he sees fit. Path guantifiers are the
mechanism for making new choices. The absence of deadlock
statement, assuming (or simulating) an oracle which does
its best to resolve blocks without backtracking, can be
expressed in GPL by the following formula, with nested,

alternating path quantifiers.

(vh ) (vt<h)(H(t,h)v (3h7>2t) (I t7) (t<t"<h™)).

Relation of GPL to SOPL

Except for the absence of programs, GPL is very similar
to Parikh's Second Order Process Logic (SOPL) [Pa78].

Both have two kinds of variabies, and a means of ordering

;"————'———————_
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occurrences of states on a path. The major difference is
that in SOPL first order variables range over states,
while their analogs in GPL range over stages. As a
consequence of that difference, while in SOPL it is possible
to express that some state occurs twice on a given path,
the same is not true for GPL. Thus, regardless of progrars,
GPL cannot simulate SOPL. However, we know of no really
useful statement which can be made in SOPL, but not in
GPL (ignoring programs), and, since Parikh has shown that 2
SOPL is undecidable, we may not want the full power of
SOPL. We do not know whether GPL is decidable.

When Parikh defines the restriction SOAPL of SOPL,
he changes the meaning of first order quantifiers, letting
them range over stages rather than states. But he restricts
the use of path quantifiers to such an extent that they
can no longer be used as we have used them in our absence
of deadlock statement. In SOAPL, every time a path is
quantified, it is restarted, and bound to a new process.
In Chapter 5 we show that, when programs are added to
GPL, GPL is strict. ' more expressive than SOAPL.

The logics of Pratt [Pr78), Pnueli [Pn79)} and
Nishimura [N79) all restrict the use of path quantifiers
the way SOAPL does, so they can't be used as they are in
our absence of deadlock statement. Our less restrictive

use of path quantifiers is a major difference between

GPL (and MPL) and most process logics proposed to date.
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3.2, Formal definition of GPL

The syntax and semantics of GPL are given below.

The truth value of a GPL formula is determined by an
environment E = (A,f), consisting of a structure
A = (U,n,®0,¢o), which supplies a process = over the
set U of states and interprets the basic predicates, and i
a binding f of variables to values, with f(h) ¢ n for h ;f
a path variable, and f(t) ¢ pre(n) for t a stage variable. ,;
pre(n) is the set of all finite legal prefixes of members
of m. Let P e ¢ be a basic predicate, p and g be GPL :;
formulas, s and t be stage variables, and h be a path
variable.
1. P(t) € GPL; E k¢ P(t) iff end (f(t)) ¢ ¢O(P).
2. H(t,h) € GPL; E Fk H(t,h) iff f(t) = f£(h).
3. a) ~p e GPL; E b ~p iff not (E k p);
b) (pvqg) ¢ GPL; E k¢ pvg iff EF por E ¥k q.
The usual Boolean operators true, false, A, 9, etc.
are defined in terms of v and ~.
4. a) (t<s) e GPL; E k t<s iff £(t) < £(s); -
b) (t<h) € GPL; E F t<h iff f(t) < £(h). %
The semantic < is the prefix relation. {

5. 3t peGPL; ER3It p iff (3Jtepre(n))(E kp).
v
h#p)o “_ﬁ
Ez(Eﬁ) is the environment which assigns £(t)=1(f(h)=y), ’

6. 3hpeGPL; EpIh p iff (3yem))(E

with all other assignments being the same as in E. It is
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well known that the relations <, = and t=succ(t”)
(successor) can be expressed in terms of <. For example,

t is the next stage following t~,

(t = succ(t”))

t? <t A Vs(sst’v t<s).

We are ready to prove some technical results about
GPL. We begin by defining a nonstandard semantics of
GPL. Nonstandard GPL has the advantage of being more
closely related to some other logics than is standard
GPL, though standard GPL more closely reflects our in-
tuition about the nature of processes and predicates.
Since we show that the satisfiable formulas are the same
under either semantics, we can interchange the two

freely.

3.3. Nonstandard GPL

In most versions of the predicate calculus, an
uninterpreted predicate P(t) is interpreted freely over

the same set as t ranges over. But in GPL, basic predi-

cates apply to stage variables, while they depend for their

truth value only on the final state of a stage. Thus
it is required that P((u,2)) = P((u,<u-+u>)). A natural
extension to GPL is to permit the truth value of predi-
cates to depend on the whole stage, not just the final
state. That extension is nonstandard GPL. The logic
N-GPL is defined exactly as GPL, replacing k by h'ﬂ

with the exceptions that in a nonstandard structure AN =
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(U,n,¢°,¢§), ¢o:® + P(S(U)) is a more general inter-

0
pretation of basic predicates, and rule (1) for GPL

is replaced by

1Y P(t) € N-GPL; E ENP(t) iff f£(t) ¢ ¢§(p).

A natural question is whether the satisfiable (or
valid) formulas of GPL and N-GPL are the same. The
answer is yes.

Before proving that, we make a short digression
concerning a strengthening of GPL. Rather than letting
path variables range over mn, and stage variables range
over pre(m), we could let path variables range over all
paths in ¥(U), and stage variables range over all stages
in S(U). The ranges of quantifiers can be explicitly
bounded using the special predicate h € .

Though the stronger version of GPL is more expressive
than GPL, it is not as well behaved. The standard and
nonstandard semantics do not yield the same satisfiable
formulas in the strong version of GPL, for we can write
a formula which says that P holds for exactly one stage,

as
0= 3tvs(P(t) A(P(s)>8=1t)).

Q is certainly satisfiable under the nonstandard semantics,
in either GPL or the strong version of GPL, But under

the standard semantics, if P(u,o<v+w>) holds, then so
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must P(u,o<v-+w><ww>); hence Q is not satisfiable in the
standard strong version of GPL.

Nevertheless, the satisfiable formulas of GPL are
the same under the standard and nonstandard semantics.
The reason is, intuitively, that by limiting the range
of quantifiers, structures have more control over the
truth of formulas. Q is satisfiable in standard GPL;
simply let 7 be the singleton set {(u,})).

Since the purpose of GPL is to describe the set 1,
it is unnatural to permit variables to range over a
set larger than 7 and its prefixes. Therefore we study

the better behaved logic GPL.

Theorem 3.1. SAT(GPL) = SAT{(N-GPL)

Proof. The inclusion SAT(GPL) &€ SAT(N-GPL) is trivial,
for ¢§ can assign the same truth value to all stages which
end on the same state.

Suppose EN = ((UN,ﬂN,¢O,¢§),fN) is a nonstandard envi-
ronment, and ENk p. We construct a standard environment
E° = (Us,ns,oo,¢§),fs) for p as follows, letting each state
on a path remember the entire history up to its position.

vS = s,

k:v(uN) + vuS,
For finite Vv,
K((u,A)) = (u,d),

K((u,cvsw>)) = (u,<(u,A) = (u,<v=w>)>),

L ) R P 3 WO T, 3 & L TR
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K(Pe<urvo><w+x>) = K(Pe<usy>) ¢ <Ps<u+w> =

YPoe<u+vo<w+x> >,

For infinite ¢, Ky is the limit of Kt for all t<y.

7S = {Ky: WCHN}
65 = of.
£5 = Kk o £V,

The states of Es are the stages of EN. K replaces
each state u in ¢ by the prefix of ¢ up to u. For

example,

(*) K(u,<usv><w*x>) = (u,<(u,r) =+ (u,<usv>) >

<{u,<u*w>) =+ (u, <usv><w*x>)>),.

Notice that the second transition of the right hand side
of (*) begins with (u,<u-w>), not (u,<u+v>). If w=v, then
it makes no difference, and both sides of (*) are legal.
On the other hand, if w#v, then both sides are illegal.

It can be shown that

Kl. ¢ is legal iff Ky is legal.

Other easily proved facts about K are

K2. ¢ = end (Ky) for all finite ¢;

K3. ¥ v, iff Ky < Ky.

Theorem 3.1 follows immediately from the following claim:

s QAREEBRI I e s
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. N . S
- . Claim. For every p, E and associated E7,
Y #Np iff ES¥ p.

proof. By induction on the length of p.

p(t). EEVP(t) © (1) € o (P),
& Ny e oS,

& end (KEV(t)) € ¢§(p) by K2,

¢ end (£5(t)) € ¢§(P>,

& Sk plb).

peny . EN ENME(e ) € ) = ),

& xeN(e) = k£N(h) by K3,

both directions,
S £S5(e) = £5(n),

& 5k H(L,D).

np, pvg. Trivial.

t<s. BN RN tcs & ey < s,

& ke () < k£ (s) by K3,
& S() < £25(8),

<> 5 & tss.

t<h. Similar to t<s.

o3 mems

. e ——
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3tp. N kN Jtp iff (31 cpre(nN))((EN)l kNp).

But the standard environment associated with (EN): is

(Es)iT, so by induction .

(**) gN N 3tp & (3t ¢ pre(nN)) ((Es)f:(T Fp). 4

If 1 is a finite legal prefix of some member of nN,

then by K1 and K3, t° = KT is a finite legal prefix of some

member of ns. Hence

Y ¥N3tp D (317 € pre(nd)) ((ES)TC':: p)

= 5 Jtp.

Conversely, every T ¢ pre(ns) is Kt for some 1 in pre (nN),

so,
Sk 3tp = (317 € pre(r®)) (5] kp),

= 31 € pre(™)) (KT Ep),

= eV N 3¢p by (**).

3hp. Similar to 3tp, using m in place of pre(n).

3.4. A lower bound for GPL

We show that L(N,<, P), the theory of the natural

numbers under the usual order < with a monadic uninter-

e <+ e e ‘
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preted predicate P, is embedded in N-GPL. L{( WN,<,P)
is nonelementary by Meyer ([M74].

Syntactically, L(IN,<,P) is a subset of GPL, with
integer variables corresponding to stage variables. Stages
can be made to correspond to integers, with prefix corres-
ponding to < on N, by guantifying stage variables relative
to a particular infinite path h. The existence of such a
path in a GPL model is ensured by (3dh)(V t<h)( 3s<h)(t<s).
In nonstandard semantics, any interpretation of P by an
L(N,<,P)-model can be duplicated by a GPL model.

Further details of the embedding are left to the reader.

Theorem 3.2. The validity (equivalently the

satisfiability) problems for GPL is not elementary recur-

sive. ']

3.5. Closed GPL

Though we Qo not know whether GPL is decidable, we
can show that GPL over a particular class of processes, the
closed processes, is decidable. Moreover, there are some
properties which can be expressed in GPL for closed
processes, but which may not be expressible in GPL for
arbitrary processes. Hence, for some applications, closed
GPL may be more suitable than GPL,

Definition. A process n is closed if for every

ascending prefix chain T1<T5< coen each of whose members

et ol LA -
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is in pre(m), the limit of the sequence T1eTor oo is in ™,
Example 1. If m is the set of paths in a finite
branching, but possibly inf:nite depth, tree, then by
Konig's lemma 1 is closed.
Example 2. 7 = {(0,<0+0>1<0+1><1+1>%): i>0) is not
closed, for (0,<0*0>i) is in pre(mn) for all i, but Y

(0,<0*0>w) is not in m.

In Chapter 1 we described an interpreter which
evaluates processes. Whenever the interpreter encounters
a block on one path, it tries another path. Suppose we
run the interpreter on the non-closed process 1 =

{(0,<0+0>%): i>0}. The interpreter would constantly

choose longer and longer paths; in fact, it would behave
as if it were following the fictitious path (0,<0*0>w).
Of course, that path is in the closure of 7. Allowing
the interpreter to change paths at will in effect closes
the process being evaluated. Thus, in closed processes,
our notion of an interpreter makes sense. In non-closed
processes we must be very careful.

The usual sequential program constructs if-then-else, while-do,
and sequencing preserve closed processes. However, as mentioned
on page 9 , a fair concurrency operator does not preserve closed
processes. Closed GPL, or C-GPL, can be thought of as the theory of
secuential processes.

Sequential processes are often deterministic. If those pro-
cesses are also assuned to be closed, then C-GPL can be made into
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a logic of deterministic sequential processes, for "7 is
deterministic" can be expressed in GPL as (th,tz,t3 €
pre(m)) (t2=succ(tl) A t3=succ(tl) > t2=t3) .

There are satisfiable GPL formulas which are not
satisfied by any environment whose process is closed. An
example is a formula which expresses

l) 1 contains no infinite paths, and

2) for every stage in pre(m), there is a longer
stage in pre (7).

Clearly, no closed process can satisfy both (1) and
(2). But the process {(0,<0»0>i): i>0} does satisfy
both of them. (1) and (2) are written in GPL as

1) (v h) (3 t<h)(V s<h) (s<t),

2) (Yt) (3 s) (t<s).

We have just proved

Theorem 3.3. SAT(C-GPL) ¥ SAT(GpL). 1§

This is in contrast to SOAPL, where any satisfiable formula
is satisfied by a closed model.

C-GPL may in a sense be more expressive than GPL.
Suppose we wish to write "1 must terminate," in the sense
that 7 can't run forever, and n can't block, assuming an
interpreter which tries all alternatives whenever a block
is encountered, In C-GPL, "7 must terminate" is expressed

by the GPL equivulent of the following two sentences:
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l. 7 contains no infinite paths,

2. If path hen blocks at stage t, then there is a
path h'er, with t as a prefix, which does not block at
stage t.

In C-GPL, sentence (2) is (V¥ h) (V¥ t<h)(H(t,h) v

(3Ih°>t) ( 3t”<h”) (t<t”)). Sentences (1) and (2) can of
course be written in GPL, but they no longer have the
desired meaning. For the process 1 = {(0,<O*O>i<l*l»:i30)
satisfies both (1) and (2), although 7 contains no termi-
nating paths. The reader should be able to convince
himself that (1) and (2) do express "1 must terminate"
when 7 is closed. There does not appear to be any way to
express "nm must terminate" which has the desired meaning
for all processes.

There is an algorithm for deciding satisfiability of
formulas in C-GPL. Following Parikh [Pa78), we embed
nonstandard C-GPL into SnS, the second order theory of n
successors (Rabin [R69])). 8nS is recursive by Rabin, and
nonelementary by Meyer [M74].

SnS describes strings over a finite alphabet £={sl,...,
sn}. There are two kinds of variables: first order
variables, ranging over I*, and second order variables,
ranging over P(I*). 1In addition to variables and the
symbols 3, ~, v, there are primitive formulas for relating
variables:

l, x = Y8, where x and y are first order variables,




and ¢« is concatenation,

2, Xt X, where x is first order, and X is

second order.

Theorem 3.4. SAT(N-C-GPL) is recursive.

Corollary 3.5. SAT(C-GPL) is recursive.

Proof. 1In the proof of theorem 3.1. if N is

closed, then so is ns. ]

Corollary 3.6. Deterministic C-GPL is

recursive.

Proocf. We showed above how to express

"7 is deterministic" in GPL. B




87

“
Proof of Theorem 3.4. The idea is to encode a non-

standard structure into set variables in SnS. The

structure A = (U,n,¢o,¢0) is coded as follows:
_ . i
1. Let U = {ul,uz, e J. u; is coded as ¢a~§.

2. The finite paths of 7 can be coded into a single
set variable Hf. A finite legal path is represented by
a string in (¢a*$)+'g, where t is a special symbol flagging
a terminated path. A blocked path is represented by the

sequence of states up to the first block, followed by the

special symbol b.

3, Infinite paths are coded as limits of sets of
finite paths. The set variable Hi holds all finite legal
prefixes of infinite paths in . Because m is closed,
the limits of infinite prefix chains of members of Hi

are exactly the infinite legal paths in 7.

4. Letd = {Pl, ey Pk}' For every 1<i<k there

is a set variable Fi which holds ¢O(Pi), the set of finite

IR

i * ik g
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legal paths which satisfy P,.
Before defining the translation Q:C-GPL+SnS, we list

some useful abbreviations for SnS formulas.

1. The prefix relation x<y on strings can be expressed

in SnS as

x<y VX(xch/\ (VzeX) ( 3 weX) (w=z-s,) > yeXx).

i=1
2. x=y = X<y ay<x.
3. X€Y = Vx(xeX>xeY).

Vx Vy(xeXa yeX> x=y) adx(xeX).

4. singleton (X)

5. ordered (X)

x is linearly ordered under prefix

Vx Vy(xeXa YEX 3 (X<ywv y<x)).
6. ascending (X) = Vx Jy(xeX> yeX a x<y).
7. infinitepath (X) = X represents a single infinite
path = ordered (X) a ascending (X).

8. end (x,si) = 3y(y=x-si).

9. If R is a regular expression over I, xeR can be
expressed in SnS. See Parikh [Pa78].

10. in w(X) = (singleton (X)a xenf) v
(infinitepath (X)a X€ Ili) .
11. dinpren(x) = x e(¢a*$)” a dy(x<ya yellyv Ie).

Let t,, ty) ... be the stage variables, and hl' h2 .es
be the path variables. Associated with each t; is a first
order variable x;. The value in x; is always a member
of (¢a*$)+. Associated with each h; is a set variable

xi, which contains a single string, ending on b or x,
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when hi is finite, and contains all finite prefixes of
{ - h, when h; is infinite. Define T:C-GPL -+ SnS inductively

as follows:

k T(Pj(ti)) =X, € Fj.

] T(H(ti,hj)) = singleton (Xj) A BY(ych,\ y=x;°t).

T (tiftj) = xi_<_xj .

T(tiihj) Jy(yeX,

j A xiiy) .

T(vp) = “T(p).

T(pvg) = T(p) v T(q).

T ( 3tip) 3xi(inpreﬂ (xi) A T(p)).

T( 3h;p) AX; (AnT(X;) A T(P)).

Let R = (¢a*$)*. Q: C~GPL + snS is defined by

Q(P) = (anl ni' Fll v eowy Fk)
(I; € Ra Mg& Re(tubla /AFER
A ascending (ni)
4}inpren(xi)

/i\imt (hy) )
Claim. p € SAT(N-C-GPL) iff Q(p) is true.

Proof. We have already explained how to obtain
Neo ni, Fio eees Fy from a structure. All of the condi-
tions on N, ni, Fio eoer Fy listed in Q(p) are easily

seen to hold for the values obtained from a structure. It

k|
b
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is routine to show that those values also satisfy T(p),
provided (A,f) t-Np. and Xy and xj are given the values
associated with f(ti) and f(hj) respectively, for all i

and j.

b o s ca e

Conversely, the conditions on Hf, ni. Fl, esey Fk

listed in Q(p) are sufficient to ensure that nf, ni, Fl'
csey Fk define a structure. The process of that structure
is clearly closed. Again, it is routine to show that

T(p) is true iff (A,f) th. where A is the structure

defined by I n., Fio coen F. . and f assigns the values

£!' 7i
associated with X, and xj to ti and hj respectively, for

all i and j. '

Theorem 3.7. SAT(C-GPL) is not elementary recursive.

Proof. The proof of theorem 3.2 requires only

singleton processes, which are closed. ’

3.6. GPLM

In Chapter 4 we define a modal logic MPL, and show

that MPL is decidable. GPL, is a subset of GPL which is
expressively equivalent to MPL over MPL environments,
which are a subset of GPL, environments. Decidability of
GPLM follows from the effectiveness of the embedding of
GPLH in MPL. J
While SAT(GPL,) is not elementary recursive, SAT(MPL)

cn
is in DTIME (22 ) for some constant ¢. Hence, even though




91
. MPL and GPLM have equal expressive power, MPL seems to be
E o a more reasonable logic, The main purpose in studying

GPLM is to get a handle on just how powerful MPL is.

The GPLM formulas are characterized by the

following rules.

1. Every GPLM formula has only one path variable h,
though h may be repeatedly requantified.

2. Every subformula of the form 3h p of a GPL,
formula has exactly one free variable.

3. h can only be quantified relative to some stage
variable, as (3h > t)p.
4. Every stage variable s can only be quantified
beyond another stage t, and on path h, as BS(tiszhaup).
GPLM can be regarded as an extension of Gabbay
et al.'s [GPSS80) future temporal logic (FTL). An FTL
formula describes a particular path h. Path quantifiers
are not allowed, and stage quantifiers range over h. 1In
addition, every stage quantifier must have the form
(3s>t), where t is a distinguished stage variable.

GPI;M permits path quantifiers in certain settings.

Wherever P(s) may appear in an FTL formula, (3 h>s)p

may appear in a GPLM formula, where only s is free in

(3h>s)p. Thus a means is provided of considering all

possible continuations from a given point on a path.
The restrictions made on GPLM are superficially 1

similar to those made by Parikh on SOAPL. However,
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unlike SOAPL, whose every satisfiable formula, according
to Parikh, is satisfied by a closed process, GPLH contains
formulas which are satisfied only by processes which are
not closed. An example of such a formula is a modification
of the one given for GPL on page 84. 1In abbreviated
form it is:

1. (Vht)(3t7, tt<h) (VE77, t<t™“ch) (7 <),

and

2. (Yhet)(Vt”, t<t“<h)(Fh>t”)(3t77, t7<t”“<h)

(t°<t”7).

In words,

l. Every member of n is finite, i.e., there is a
maximal stage on every path.

2. For every stage of every path, there is a longer
stage, possibly of a different path.

In Chapter 5 we show that, when programs are added
to MPL, MPL can simulate SOAPL.

While closed processes are not sufficient for all
GPLM formulas, there is a different countable class of
processes which is complete for GPLM, in the sense that
every satisfiable formula is satisfied by an environment
whose process is a member of the class, That class is the
class of LlL-processes, defined in Chapter 4. There it is
shown that LL-processes are complete for MPL.

GPL, is a real restriction of GPL. Even without

using path variables, we can write a GPL formula which is
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not equivalent to any GPLM formula in all environments.
Such a formula is D = (3Jt,, t,)(t; ¥ t,). D is not
a GPLM formula,fortl and tz are not quantified relative
to any path. D simply states that there are two distinct

stages in pre(n). Consider the two structures A, and A2,

1l
both with states {0,1}, Oo = @ and ¢, = @, but with

my = {(0,2)) and 7, = {(0,%),(1,))}. Clearly A, does not

1
satisfy D, while Az does. 1In GPL,, it is only possible to
compare stages on the same path. But in Al and Az every
path has only one prefix, namely itself, so s<t is always
true. Clearly, GPLM cannot distinguish Al from A2'

The proof of theorem 3.2 is easily modified to give
the result that GPLM is not elementary recursive.

Here is a summary of our results concerning GPLM.

GPL,, is decidable but nonelementary.

GPLM

SAT(GPLM) ¥ SAT(closed GPLM).

is strictly less expressive than GPL.

GPLM(MPL) with programs (see Chapter 5) is more

expressive than SOAPL.

3.7. Open questions

As mentioned, we do not know whether GPL is decidable,
although it is at best nonelementary. Although there are
satisfiable GPL formulas which are not satisfiable by any

closed process, there may be another countable class of
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processes which is complete for GPL, A candidate jis the
class of LL-processes, which is at least complete for the
subset GPLM. Though we do not know whether LL-processes
are complete for GPL, neither do we know of any satis-
fiable formula which is not satisfiable by an LL-process.
Whether or not LL-processes are complete for GPL, they
form an interesting class, and a study of GPL over them
would be worthwhile.

We mentioned that we do not believe it is possible
in GPL to state that 7 must terminate, though we have
not proven it. Along the same lines, is it possible in
GPL to state that 7 is closed? That 7 is an LL-process?

(We conjecture "no" in both cases.)
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Chapter 4
Modal Process Logic

In this chapter we define a process logic MPL, which
is based on the use of certain operators to express proper-
ties of processes, rather than on explicit quantification
of variables. We show that the expressive power of MPL
exceeds that of some other proposed process logics, and
is equal to the expressive power of GPLM. Nevertheless,
MPL has an elementary recursive decision problem. A major
portion of this chapter is spent presenting an algorithm
for deciding validity of MPL formulas, and proving that the
algorithm works. The worst case running time of the
algorithm is O(22cn) on inputs of length n, for some con-
stant ¢, and is far less on many inputs. Lastly, we
derive a complete proof system for MPL from the decision

algorithm.

4.1. An introduction to modal process logic.

The process logics studied in Chapter 3 all involved
explicit variables and quantifiers. While quantifiers
are powerful, they can be difficult to deal with, both on
a formal and an intuitive level. An alternative is to make
quantifiers implicit in certain operators. For example,
rather than expressing global invariance as VtP(t),

we could create an operator "GI," and simply write GI(P).

B PRI SOV IR WM s I 1 T '
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A modal logic can look very much like propositional cal-

IS 9

culus, with a few more operators, and can be handled in
ways reminiscent of standard methods for dealing with

propositional calculus. Proof systems for modal logic can

be elegant, not having to deal with the problems arising %

from explicit variables.

Some languages which fit into the modal process logic

class are described briefly below.

Hoare's logic [Ho69]), based on the partial correctness

assertion p{Alg, was one of the first to be studied. The
partial correctness statement p{n}q can be expressed in
GPL as (¥Yh )(p(t)> (vt“<h)(H(t",h)> q(t)), quite a long
statement of a relatively simple property. Hoare Logic has
the nice property that the statements it is designed to
handle can be expressed concisely. An obvious shortcoming
of Hoare lLogic is that only partial correctness can be
expressed.

Pratt's Dynamic Logic [Pr76] extends Hoare's Logic.

Dynamic Logic is based on the operator [A]. [A]lp holds at
state u if p holds at every state where A could terminate,
after being started in state u. The Hoare style partial
correctness assertion p{Alq can be expressed in Dynamic
Logic as p= [Alqg.

while Dynamic Logic is a termination oriented logic,
more general properties of programs can be expressed in

an augmented version of Dynamic Logic. We simply add
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whatever new operators we desire. Pratt [Pr78) suggests,

among others, a global invariance operator {Alp, meaning i

that p holds throughout the execution of program A.
Dynamic logic illustrates a general property of
modal logics: a formula is not simply true or false,

but is true at a given state, or, in the case of logics

to follow, at a given stage on a given path.
Hoare style logic and Dynamic Logic are closely tied

to programs as syntactic entities. But other languages

have been studied which do not include programs, and so
are more like GPL. A logic of Pnueli [Pn79] has two basic
operators, G and X. Gp (generally p) holds at stage

T on pathyif p (1) holds for every 1 < 1° < y. Xp holds
at stage 1T on path ¢y if p holds for the successor of Tt

on ¢. Pnueli deals only with infinite paths, so there is
no concern over whether the successor of 1 exists.

Gabbay, Pnueli et. al.[GPSS80) study a logic based on the

operator until suggested by Kamp [K68), in terms of which

both G and X can be expressed. They present a proof system

for the logic of until and show that any statement which can
be made using explicit time variables and quantifiers

(or, in the GPL sense, stage variables and quantifiers) can

be expressed in the logic of until. (p until q) holds

at stage 1 if q holds for some t“ > T on ¥, and p holds for

every 1°“ between 1 and t°.

Owicki [(Ow78]) suggests an operator while, p while g
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meaning "p holds as lona as q continues to hold." In view
of the fact that p until q can be expressed in terms of
while and X, it is of little concern which basis

is chosen.

It is important to notice that the meaning of all of
the operators G, X, until and while can be expressed in
terms of stage quantifiers only. Hence any logic based
solely on them must be severely restrictive in its use of
path quantifiers. Lamport [L80], in his branching time
logic, and Abrahamson [A79]), go to the other extreme,
forcing path guantifiers and stage quantifiers to appear
in pairs.

Recently, Nishimura [N79] and Harel, Kozen and
Parikh [HKP80] have extended the logic of until, introducing
operators which stand for path quantifiers relative to cer-
tain programs. These logics were unknown to us when we
developed MPL, and seem to extend the language of until
in a slightly different direction. As programs are an

iﬁtegral part of those logics, we discuss them in Chapter 5.

4.2. The logic MPL

There are two types of operators in MPL, stage opera-
tors, which replace stage gquantifiers, and path operators,
which replace path quantifiers. Additionally, there is
a special symbol H which replaces H(t,h). MPL can be
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regarded as a syntactic restriction of GPL and we give

M’
the GPLM equivalent of each operator when defining it.

The truth value of an MPL formula depends on a particular
path and a particular stage on that path. Reflecting that
are the two free variables h and t in the GPLM eguivalents

of MPL formulas.

Stage operators

Stage operators are used to express properties of a
given path. There are two primitive operators, Y and W,
the rest being defined in terms of them.

l. Yp means "if there is a successor to t or h,
then p holds there," and is equivalent to the GPLM formula

Yp £ (Vs, t<s<h) ((Vr, t<r<h)(r<tvs<r)>p(s)).

2. Xp = ~Yvp means "there is a successor to t on h,
and p holds there."

3. pWg (p while q) means "as long as g continues to
hold beyond t on h, p continues to hold,"” and is equivalent
to the GPLM formula

PWg = ( Vs, t<s<h) ((vr, t<r<h)(r<s3q(r))>p(s)).

4. pBg = v(vp Wvg) (p before q) means "p holds
at some stage t“>t, and q does not hold at any stage
before or equal to t°."

5. CGp = pW true (generally p) means "p holds at every

stage beyond t on h.”
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6. Fp AGvp = p B false (in the future p) means
"p holds at some stage beyond t on h."

Although, as mentioned earlier, W and Y can both be
expressed in terms of the single operator until, we fingd
the two operators W and Y more convenient. Until is

expressed in terms of W and Y as

p until g = X(Fga pWvq).

Path operators

We have already given compelling reasons for having
path quantifiers in GPL. The same reasons are equally
compelling for MPL. As a substitute for path quantifiers,
we introduce the operator D, suggested by Michael J.
Fischer [private conversation], and its dual ¢. O univer-
sally quantifies a certain path variable h, and ¢ existen-
tially quantifies h.

1. 0Op is equivalent to the GPL, formula (Vh>t)
p(t,h).

2. Op = A~J~p is equivalent to the GPL,, formula
(3 h>t)p(t,h).

4.3. Formal semantics of MPL

A formal semantics for MPL, independent of GPI.M, is as follows:
An environment E = (A,y,T) consists of a structure A = (u.n,oo.%),
a path yev, and a stage T < y. We write y,Tep for (A,¥,T)k p when
A is understood. let P e 00, and p,q € MPL,

ettt vt ———— e s . e W N A S ¢ i
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1. P e MPL; ¥y, TPk P iff end (1) ¢ ¢°(P).
2. HeMPL; V,Tt F B iff y=1.
3. ~p € MPL; ¢,T F vp iff not (V,T F p).
4. pvgqeMPL; y,T kpvg iff v, TPpor v,1¥Fg.
5 Yp € MPL; y,TFYp 1iff ({(y=1<u~>v>y”~ and
1<usv>legal) 2 y,T<u=v> Fp).
6. pWg € MPL; V,TFk pWg iff for every legal 17,
1<1°<h, (V177,117 7<17)
Wt F g™ v, 17k p.
7. DOp e MPL; v,7 F Op iff (VW y >1,0%en) (v, 1k p).
We have already shown that MPL can simulate the
operators G, X and until. Gabbay et. al. [GPSS80] describe
a number of properties which can be expressed in terms of
those operators, which we do not repeat here. MPL can

of course express all of those properties. MPL can express

properties not expressible with G, X, until and while alone.

Lamport [L80) gives a language with two operators O and
A~ , and gives two different sematics for 0 and ~,
which he calls the "linear time" semantics and the "branch-
ing time" semantics. Lamport shows that each version can
express properties not expressible in the other version.
MPL can simulate both versions. To avoid confusion, we
rename Lamport's O operator BOX.

Under linear time,

BOX p Gp,

~~ p = Fp.
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Under branching time,

e —— e ey g

BOXp

g Gp

M D QFp.

MPL can simulate PDL, provided programs are strongiy
restricted. Only A and A* are permitted, where A is a
particular basic program. A PDL formula p is translated
to MPL formula p° by replacing

(Alg by QyYgq,
and [A*])g by DGq.

Given a PDL model for p which assigns to A the rela-

tion p(A), we can find an MPL model for p” whose process is

n = p(A)Y, all infinite paths whose transitions are pairs
in p(A). Conversely, suppose A is an MPL model for p”° with
process n. We define a PDL model with states pre(n), and
p(A) = {(x,y): x,y € pre(n), y=succ(x)}. To make basic
formulas go through basically unchanged, we must use
nonstandard MPL, rather than standard MPL. Nonstandard MPL
is defined analogously to nonstandard GPL (see Chapter 3).
As there is a simple embedding of MPL in GPL, the nonstan-
dard-satisfiable formulas of MPL are just the standard
satisfiable formulas.

As a consequence of the embedding of PDL over A and
A* in MPL, Fischer and Ladner‘'s [FL79]) DTIME(cn) lower
bound on PDL applies to MPL as well.

The classical modal logics T, S4 and S5 are all

embedded in MPL. Fischer and Ladner remark that T, S4
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and S5 are embedded in PDL over A and A*, Let L be the
modal operator "for all visible worlds." By the PDL
simulation, it can be seen that in T, Lp is pa0O Yp.
In S4, Lp is just OGp. For our simulation of S5, we
prefer to point out the similarity between the 0O operator
of MPL and L of S5. Let worlds correspond to members of
T The value of P(x) for x e is determined
by the wvalue of P at the second state on x.
Thus, to translate an S5 formula to
MPL, replace L by O and basic formula P by XP.

MPL can express absence of deadlock. An absence of
deadlock statement must express that, whenever a path
blocks, there is an alternative path which does not block
in the immediate future. Termination is considered a
normal condition.

7 cannot deadlock = DG(Hv O0X true).

4.4. Relation of MPL to GPLM

Let GPLMl be the GPLM formulas with a single free
stage variable.

GPLMl formulas can be characterized by the following
two rules,

l. If p is a TLl formula relative to path h (every
quantifier has the form (3s, t<s<h)), then p is a GPL,,,

formula.

ey
" b

1
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2. If p(s) is a GPL,, formula with only s (and
possibly h) free, then GPLM1 is closed under substitution

of (3 h>s)p(s) for P(s), where P is a basic predicate.

In this section we show that MPL and GPLMl can
express the same properties. Environments for GPLM
and MPL are almost the same, each consisting of a struc-
ture, a path, and a stage. Thus it makes sense to

say ¢,7T ¢ p, where p is a GPL formula. The only

M1
difference is that in a GPLM environment the stage need
not be a prefix of the path, which it must in an MPL
environment. We get around that by considering MPL
environments only, saying that MPL formula p and GPL
formula p° are equivalent if E k p iff Ek p“ for every

MPL environment E.

Theorem 4.1. There is a recursive translation T

from GPLMl formulas to MPL formulas such that for every
MPL environment E and every GPI.Ml formula p, Ek p iff
ErT(p). Conversely, there is a recursive translation T° fram MPL

’IIIIlIllIIlIlIlIIlIlIIIIIIIIIIIIIlllIlllllllIIIIIHIllIIIllIIIIIIIIII-II-I---ﬁg‘H1
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formulas to GPLM].fonmuas such that for every MPL environ-

ment E and MPL formula q, E k g iff E ¢ T (q).

Proof. Translation T” has already been given. To

find T, we follow Nishimura [N80), who applies the results

of Gabbay et. al. (GPSS80) to a logic similar to MPL.

Let TL be the predicate calculus of a total order < with 1

monadic uninterpreted predicates, and let TLl be the formu~
las of TL with at most one free variable.
Kamp [K68] shows that TLl is expressively equivalent

to the logic L(u,s) of two operators, until and since,

defined in terms of TL as

p until gq (3s>t)(g(s) A Vr(t<r<s=p(r)),

(3s<t)(q(s) a vr(s<r<to>p(r)).

"

P since q

Although until can be expressed in terms of W and Y, since
cannot, for since looks into the past from time t, while W

and Y look only into the future. Gabbay et. al. show that

the logic L(u) of until only is expressively complete for
those formulas of TL which look only into the future. A
future formula of TL, is a formula with one free variable

t, and such that every quantifier in the formula has the

form (Vs>t) or (3 s2>t). ~

L Theorem 4.2. (Gabbay et al.) There is a recursive

translation F from the future formulas of TLl to L(u)
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such that in every model, TL, formula p holds at time t

1
iff F(t) holds at time t. ]
The proof of theorem 4.2 can easily be modified to
handle the termination formulas H(t) in TL1 and H in L(u).
Because W and Y can simulate until, we can replace L(u)
by (O -free MPL. l“x.n:u::e-'rL1 is just GPLMl without path
quantifiers, the path h providing the time domain. However,
in both L({u) and TL1 basic predicates are interpreted over
times, or stages, rather than over states. Thus L(u) is a

subset of nonstandard MPL, and future-TLl is a subset of

nonstandard GPLMI Theorem 4.2 can be modified as follows:

Theorem 4.3. There is a recursive translation

F from path-quantifier-free (pqf) GPLleonmuas to [QO-free
MPL with the property that for every nonstandard structure
A= (U,w,0°,¢°), every y € 7, every stage 1 < y, and every

paf GPLM formula p, A,y,T FN p iff Ay, l-N F(p). 1

1

In order to prove theorem 4.1, we must extend F

to all of GPLM Translation T is simultaneously defined

1.
and proved to satisfy theorem 4.1 inductively on the length
of p. To avoid confusion, PG denotes truth in GPLM, and

* M denotes truth in MPL. The superscript N is dropped

from F for clarity, and A,y,T b p is abbreviated y,T k p.
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Suppose p has the form (3 h>t)a. Define

T({3h>t)a) = OT(a),
Then

VeT o kg
S (v e M-

&SIV e MW > 1Ay, ky T(a))

(3h>t)a

v

TAYV",T FG a),

by induction,
& vt FMOT(a).
On the other hand, suppose that p=a does not begin
with (3h>t). Let F be the translation of theorem 4.3.
Define R:GPL

Ml
maximal subformula b = (3h>s)a“(s) of q by a new basic

+pgf GPLMl by letting R(q) replace every

predicate Qb(s). Let R”“:MPL+MPL be the translation which

replaces Qb by T(b). T(a) is defined as

T(a ) = RoFeR(a).
Claim. For every y and 1, y.,1 kg 2 iff v,t FM
T(a).

Proof. Let A be the set of Q-variables used by R
on a and let A” = (U,w.oou A.oa) be the extension of

A to Q-variables which assigns

¢°‘(PL = ¢°(P) for P ¢ oo,
’o’(Q ) = {1: A'WO'T ’G b]
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The truth of b = ( 3 h>s)a“(s) does not depend on Voo
g0 the choice of y_in the definition of ¢°'(ob) is arbi-

trary, and ¢°‘ is well defined.

A V,T ﬁc a
ATyt k; R(a) from the definition of ¢_,
A%, T Ky, FeR(a) by theorem 4.3.

But for every ¢ and T,
A0t Fy O
S 1t ¢o‘(Qb).
& Ay, ks b
E Ay, ky T(b) by induction, for b is
a subformula of a. Hence replacing Qb by T(b) cannot change
the truth value of any formula. Thus
Ab,T b2 O AL, FMR’°F°R(a),
2 A,1 Py T(@),
which proves the claim.
All that is left to proving theorem 4.1 is to note
that we have proved it for nonstandard structures, and
standard structures are a special case of nonstandard

structures. ]

We note that, while MPL and GPLM have the same
expressive power over MPL environments, the validity
problem for MPL is ehmmuﬂary1nunutive,uhihethat!brtzun is not.
(The translation T given above is not elementary recursive. In fact,
P is not.) That lsads us to believe that MPL may be a rore suitable
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language if one is interested in verifying the validity of formulas.
On the other hand, there may be interesting statements which can be
made concisely in GPLM, but can only be expressed by very long MPL

formulas, though we know of no such statements.

4.5 Decidability of MPL

This section proceeds as follows: First, we define
a structure called an LL-graph (LL stands for limited
looping). For each LL-graph, we define an associated
MPL structure. An LL-graph is a finite representation of
its associated MPL structure, the structure possibly having
both infinite paths and infinitely many paths. Not all
structures can be represented by LL-graphs, for there are
only countably many LL-graphs, and there are )(2 processes.
Nevertheless, the LL-graphs are enough for our needs.

Next, we describe the algorithm for deciding satis-
fiability of MPL formulas (or, equivalently, validity of
MPL formulas, since p is valid iff ~p is not satisfiable.)
Given a satisfiable formula Py’ the algorithm constructs
an LL-graph L(po), whose associated structure satisfies
Poe On the other hand, given a formula Py which is not
satisfiable, the algorithm noticeably fails to construct
an LL-graph for Poe

Finally, we prove that the algorithm has the proper-
ties claimed for it in the preceding paragraph, and that

AR i : A
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,Cn
it requires time 0(2 ) in the worst case.

4.5.1. LL-graphs

A common approach to establishing the decidability
of a logic is to show that every satisfiable formula is
satisfied by a model of bounded size. Then one way to
decide if a given formula is satisfiable is simply to try
every model up to a certain size. MPL structures can be
infinite in three different ways: they can have infinitely
many states, infinitely many paths, and paths of infinite
length. While it is possible to make do with finitely

many states, it is easy to write formulas which are satis-

fiable only by processes which either have infinitely many
paths or at least one infinite path. For example:

1) 9GXtrue forces n to contain at least one infinite
path, and

2) G O X true A ODOFYfalse forces 1 to contain ar-

bitrarily long paths, but no infinite paths, and so forces

n to contain infinitely many paths.

An infinite process m can be represented as the
set of paths in some finite directed graph. But there is
a problem with that approach; the set of paths in a finite
directed graph is closed, in the sense of C~GPL, But the
satisfiable formula DG OXtrue A OFYfalse mentioned

above is not satisfiable by any closed process. Neverthe-
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less, directed graphs can be used to represent processes,

I
!
!
|
i
i

there being at least two ways to define a non-closed
process from a directed graph.

1. Define the process associated with graph G to be
the set of "fair" paths in G, where a path is fair
provided, if it passes through node v infinitely often,
then it passes through every node accessible from v infi-
1 nitely often. For example, the set of fair paths in the

graph

is not closed, for it does not contain the infinite path

which remains in vy forever.

2. Let a directed graph have two different types of

arcs, called O-arcs and X-arcs. Define the process asso-

ciated with such a graph to be the paths which traverse

finitely many ¢ -arcs, but possibly infinitely many X-arcs.

It is clear that the process associated with

0

| X

is not closed.

We adopt both methods for LL-graphs. While the utility

of ¢© -arcs will become clear, the fairness condition is

used mainly for technical reasons.
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Definition. An LL-graph is a six-tuple
(v, Ao, Ax, VB' 00,¢0) where

(v, Aoqu) is a directed graph with vertices V,

Q-arcs A, and X-arcs Ax;

VB € V is a set of potential block vertices;

00 is a finite set of basic formulas;

¢o: ¢o* P(V).
Additionally, an LL-graph must obey conditions LL1 and
LL2. Let Q¢ and X be the binary relations induced by
Ao and Ax respectively.

LLl. If uOv then v Q u. ( O -arcs are bidirectional).

LL2. If u ¢ v then u ¢ ¢O(P) iff v ¢ ¢O(P) for

every Pe®o.

The purpose of LL1 and LL2 will become clear later.

Definition. An arc-path in an LL-graph is a pair
consisting of a start vertex and a sequence of zero or
more (or infinitely many) arcs defining a connected path

in L.

Definition. A route r in an LL-graph is an arc-path
which satisfies R1-R3.

Rl. r contains finitely many {-arcs.

R2. .r does not end on a vertex with an X-arc leaving

it.

R3. If r passes through vertex u infinitely often

and there is a path of zero or more X-arcs from u
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to v, then r passes through v infinitely often,

Definition. A simple route is a route which contains

no ¢-arcs.,

Note that there is at least one simple route starting
at any vertex, which can be found by following X-arcs as
long as they exist, using some fair system of choosing
between X-arcs.

We are now in a position to define the MPL structure
AL associated with an LL-graph L. The states of AL are
the eguivalence classes of the vertices of L under the
equivalence relation ¢{*, the reflexive transitive closure
of ¢. The paths of A, are obtained from
the routes in L. Given a route r,
define the path T by

1) erasing all 9-arcs in r,

2) replacing each X-arc (u,v)x by the transition
<u+Vv>, where u is the equivalence class of u,

3) adding the transition <A+A> to the end of T
when T is finite and ends on a vertex in V..
The paths in A, are the bars of the routes in L. Formally,
given L = (V, A , Ay, Vg, & 48 ), define A; = (v,
ﬂ.oo.Eo) by

U= {vevV: ud*v),

g = {u: ue V),

7 = {r: r a route in L},
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359) = {u: ue ¢O(P)).

Example. The LL-graph

P P

with ¢O(P) = {u,r} and VB = (§ represents a structure with
two states, u and w, and process m = {(u,<uU+u> <u-w>

<wawh): o i>0)} v {(w,<wrw>@ }). ¢ (P) = {u}.

4.5.2. The Decision Algorithm for MPL

Given formula R the algorithm constructs a tableau
for Ro’ which is a generalization of an LL-graph. With
each node u of a tableau there are associated two sets of
formulas Su and zu, which are used to guide the construc-
tion. The set VB and function ¢o for a tableau are defined
in terms of 5, by

Vg = {u: nHes B,

¢, (P) = {u: P e Su}.

Some of the nodes of a tableau are marked consistent, while
others are marked inconsistent. The consistent subtableau
Tc of T is obtained by deleting all inconsistent nodes and
associated arcs from T. The tableau TIFL) constructed for

Po is designed to have the following property. Let A

be the structure associated with Tc(‘B)' u be any node in

{ - .2 S
PG %, L3 e T
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Tc(po),q be any formula in 2 2 S , a, be any finite

arc-path in Tc(po) ending on u, and r be any simple

u
route starting at u. Then A, E:?:, E: B gq. The bar of
a, is defined as for routes, with the exception that
<@-+@> is not added to its end. By constructing T(po)
so that Zv contains po for some node v, we see that, if

v is consistent, then A, a . r

e 5; F P, where a_ = (v,})

and r, is a simple route starting at v, and hence Po is
satisfiable. Conversely, we show that if Py is satis-

fiable, then Zv contains Pg for some consistent node v.

The method of constructing T(po) is similar to other
tableau methods, such as that for classical modal logic
[HC68]), and PDL [Pr78)}. We begin by setting T to the

tableau consisting of a single node A with Sy =2, °=
o o

{pu}. T does not yet obey the properties claimed

for T(po). In order to make T obey the claims,

we perform transformations on T. Each transformation is

intended to make one formula in one node hold for simple

routes starting at that node, and accomplishes that goal

either by adding new formulas or creating new nodes. For

example, if Su contains ~(pvqg), a transformation replaces

~(pvq) by ~p and nq, in hope that future transformations

will cause both Ap and Aq to be satisfied. 1f 54 contains

d
g
T
+
1
i
g
H
3
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pv q, then a transformation causes u to split into two
nodes u” and u”““, one containing p, the other q.
Transformations try to make both u” and u”” satisfy the
claims, but need only succeed for one of them. Consistent
nodes are ones on which transformations succeed. 1If Su
contains AYp, a transformation creates a new node v,
draws an X-arc from u to v, and places Ap (among other
formulas) in Sv' If some alternative for v is consistent,
then u is consistent. The hardest formulas to satisfy are
the box formulas. The transformations first must reduce
them to a standard form, which is a O followed by a
disjunction of one or more formulas, each starting either
with Y or AY. There are suitable transformations for
formulas in standard form. ~v[D formulas are also re-
duced to standard form in order to avoid splitting trans-
formations (such as that for pv q) from applying to nodes
with ¢-arcs pointing to them, the reasoning being that
if Su contains (Pv “P), one alternative of u contains P,
while the other contains “P. But condition LL2 requires
that nodes linked by ¢{-arcs satisfy exactly the same basic
formulas. Splitting before drawing any ¢{-arcs avoids that
problem.

Transformations are applied until no more can be
applied. At that point, consistency rules are invoked,
causing some nodes to be marked inconsistent. When no

more consistency rules apply, the construction is finished,

o i
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] . and T = T(P_).

Transformations alter both S and 2 sets. Set zu
is a "history" set, containing every formula which was
ever in su‘ In particular, SuE Zu. Some notation,
similar to Pratt's [Pr78), will make transformations

easier to write.

l. p+g, r means "if Su contains p, then set su: =
(s, - {pH v {g,r}, and 2 : = 2 v {q,r}."
2. p+*q or r splits a node into two new nodes.
If S, contains p, replace u by two new vertices u” and u””,
with
S,- = (5, =Py v {a}, 2z . =12 vigl,
S,-- = (s, - {p}) v {r}, Zyes = 2, {r}.
If any X-arcs used to point to u, duplicate them for u”

and u”” as shown below.

eec oy p'-oo .oc'q'-o- ...,t,...

Due to the order in which transformations apply, no vertex
with a {-arc pointing to it is ever split.

3. D(avp) + ... 1In general, D is followed by a
disjunction of several terms, and only one of the terms is
transformed. The disjunction av p is thought of as a set

of formulas, one of whose members is p. Transformations
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very similar to those for formulas outside the scope of
D apply to those inside the scope of D.
4. p®» A is an abbreviation for two rules, one for
p, the other for ~p.
P D q.,r represents (p »+ q,r) and (vp = g or ~r).

P ® q or r represents (p + q or r) and (v =+ g, r).

Transformation Rules

The transformation rules are listed below. They are
broken into five groups, transformations in group one having
the highest priority, group two lower, etc. We assume that
Po is written using only basic formulas and the symbols
~, v. H, 0, W, Y, (, ).

Group one

TR1. p =~ p.
TR2. pvqg®porqg.
TR3. pWg = ~q or (p, Y(pWq)).

TR4. ~(pWq) =+ (q, “p) or (g, p, Y (PWQ)).

Group two
TRS. D(av “wp) » O(avp).
T™R6. O(a v ~(pvq)) ® O(avrp), Dlav ).
TR7. O(avpWg) D Olavgevp), Diavgv Y(pWg)).
Tra,  DO(av ~(pNg)) B D(avq), DiavapvaY(pwg)).

Group three

TR9. D(avP)¥® Daor? for P ¢ ¢ .
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TRI0. O(avAP)  Oaor P for P e o .

-

TR11. D(a.Op) 3 Da or Dp.
TRi2. O(av~0p) 3 Oa or ~0Op.
(If a is empty, DOa is false.)

Group five
TR14. a)

Rules for drawing X- and ©Q-arcs.

If s, contains either "Yp or [J(NYplv...

vaPk), create a new vertex v, and draw an X-arc from u

to v.
b) 1If part (a) results in a new vertex v,

set

s, =2, = {p: Yp ¢ Su}

vi{vp: ~Yp € su}

u{(plv ceeV Pyv MgV ...vnqk),
D(plv...vpkv'\uqlv...v'\lqm):
U(Yplv... vYp, v ¥q, v... v'»qu)

€ Su}.

TR15. 1I1f Su contains 'VD(Ypl V..o VYP v WQ

YV oeeo V Nqu) and there is no node v such that u 0*v and sv
contains NYpl, cece wak, qu, cess qu then create a new
node v, draw a bidirectional ¢-arc between u and v, and

set

s, =2, = {NYpl. coee VYPL, Yy, ooy qu)

vi{P: P ¢ Su and P ¢ 00}
v{vP: AP ¢ S, and P ¢ 00}

viop: Op ¢ su}'
Add ~D formulas to S and 2 sets as reqguired

TR16.




e

120

. to make the following true,

!
11
a) 1If Ypl, ceny ka, Nqu, o qum are %
all of the Y and Y formulas in Sy and u 0* v for some v, |
!

then s, contains ~ O G»Ypl V oses v Nka v qu v «.. v Yg ).

b) If u o*v, then Su and S, contain the
exact same .0 formulas.

(It is easy to show that TR16 cannot cause any other
transformations to apply, or affect any consistency rules.
Hence the algorithm works just as well without TR16.
However, the correctness proof is simplified by having the
redundant formulas which TR16 adds.)

A quick inspection of TR3 and TR14 shows that the
transformations given so far can continue to create new
vertices forever. However, after some time, the new
vertices will be identical to previously constructed
vertices. The filtration rule merges similar vertices.

Filtration should be performed before group five rules,

to prevent the creation of new nodes,
Group four (Filtration.)
TR13. 1If su = Sv up to associativity and commu-
tativity of v, delete u, and send any arcs which point

to u to v instead. Set zv: = zv v zu'

Consistency rules
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Cl. 1t Z, contains both p and ~p, then u is
inconsistent.

c2. 1If su contains H and uXv for some v, then u is
inconsistent.

C3. If ud® v and v is inconsistent, then u is
inconsistent.

C4. If there is some v such that uXv and every such
v is inconsistent, then u is inconsistent.

C5. 1f zu contains V(pWg) and for every consistent
node v which is reachable from u by a path of zero or more

X~-arcs, zV contains p, then u is inconsistent.

The order in which the consistency rules apply makes
no difference. 1It can be shown that a weaker version of
Cl, which only looks for a basic formula and its negation,
is sufficient. The present version simplifies proofs.

Example 1. The tableau constructed for XP A O X+P

-~~~
th

to abbreviate AYnr and A~ O o,

vo: LXP, OX\P, o xp p—2— xvp, 0x+P, OXP]: v,

X X

<

vzz P \p

All of the nodes are consistent. The sets listed are the

§ sets, which in this simple example equal the Z sets at

A (vYAP v OnYP)) is drawn below. We use X and O freely

T YL T e

- T L TR L T T T T T Ty o, e~

-
Y
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. every node. The formula ¢XP was added to Vo and vy by
] TR16. Notice that, if r, is the simple route
1
(vl,(vl'vz)x), so that rvl = (v1,<v1*v2>), then a-rvl,
aF XP for any a ending on vy On the other hand, if r is

the non-simple route (Vl' (vl, v3)o (v3, v4)x), so that
T = (51, <Vl*34>), then ar, a does not satisfy XP. This
example illustrates a second function of ¢ -arcs, in

addition to limiting loop traversals. For a formula such

as Opl Aces A Opn to hold at a given state, there must in

general be several different paths through that state.

Q -arcs provide a means of splitting a state into n
different nodes, in such a way that node i is responsible ,

for creating a path which satisfies P;- ! 3

Example 2. The consistent subtableau constructed for

G(FP A FAP) is drawn below.

S -

XFP, XF ~P, YG(FPAF\P)

. P, XFvP, YG(FP a F\P) P, XFP, YG(FP A F\P) ‘
X
| O Ok

It is clear that every fair route satisfies G(FP A F\P),

] although some unfair routes, such as the one which remains

in the lower left-hand corner forever, do not. This example
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shows that the fairness condition is required for this
particular algorithm to work, though not that fairness is
required for there to be an LL-graph satisfying every

formula, for the graph whose only route alternates between

two nodes, one containing P and the other AP, also satis-
fies G(FPA FwP). We know of no formula which seems to
require fairness.

Example 2 reveals that this algorithm sometimes
constructs non-closed processes to satisfy formulas which
are satisfiable by closed processes. Thus the algorithm
cannot be used directly to decide satisfiability of MPL
formulas over closed processes. We do not know of
any better means of deciding closed MPL than by translating

to C-GPL, and testing there.

4.5.3. Correctness of the decision algorithm

Let T(po) be the tableau constructed for Py let

Tc(po) be the consistent subtableau of T(po), and let

A be the associated structure. We begin by bounding

the time spent constructing T(po).

Theorem 4.4. 1If Py has length n, then there are

5n
at most 22 nodes in T(p,) for n > 2,

Proof. Let S(po) be the set of formulas of the

forms
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a) p, b) ~p, [
c) Yp, d) Yp,

where p is a subformula of po. A simple induction shows ;
that S(po) has at most 4n members. It is not difficult ‘
to show that every formula in zv for every v has one of
the forms

1) ;e

2) D(qlv veev Q).

3) '\,D(qlv Y qk)'
where dys -0 g are members of S(po). Thus there are

4n different formulas written in

no more than 4n + 2.2
nodes, up to associativity and commutativity of v.
By the filtration rule, no two distinct vertices can
contain the exact same formulas, so there are at most
4n+24n+1 2Sn

2 < 2 different vertices. |

cn
Theorem 4.5. SAT(MPL) is in DTIME (22 ) for

some constant c.

Proof. We leave it to the reader that T(po) can

be constructed in time polynomial in the number of

nodes in T(po) in the worst case. For example, no more

Sn

than 2 transformations can apply to any given node,

and all of the formulas in a node have length at most el

for some c. !
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Lo The best lower bound we know of on the complexity of
MPL is the single exponential time bound which follows
from MPL's ability to efficiently simulate PDL over the
programs A and A*, Fischer and lLadner [FL79) prove that !

PDL over A and A* is not in DTIME(C“) for some c>1.

Theorem 4.6. The satisfiability problem for MPL

is not in DTIME (c") for some c>1. ]

In section 4.6, we present a proof system A for MPL.

Our goal is to prove the following theorem.

Theorem 4.7. Let v be a node in T(po), and let

P, be the conjunction of all formulas in sv’ The follow-
ing three statements are equivalent.

1. “P,, is valid.

2. P, is provable in system A.

3. v is inconsistent.

The remainder of this section is devoted to proving
(1) 3 (3). (3) = (2) and (2) =5 (1) are deferred to section

4.6, where system A is defined.

First we show that correctness of the decision
method is a corollary of theorem 4.7. Assume without
loss of generality that P, has the form Xp. (If P, has
any other form, we can test Xp_, which is valiad iff Po

is valid.) Then v_ is never changed, and p, = P_..
() Vo o

o 3
e .

e SUSUUEE e S i R e
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Corollary 4.8. P, is satisfiable iff Vo is

consistent. |
Before proving (1) = (3), we prove four small lemmas.

Lemma 4.9. In the completed tableau T(po), if
P e ¢,(~P, Op,nOp respectively), is in S and u=v

then P("P,0Op,rOp respectively) is in Sv.

Proof. Lemma 4.9 for ~0Op follows from the action
of TR16. For P, P and Op it follows from the fact that
TR15 copies basic formulas, their negations, and box
formulas across ¢-arcs, and no new box formulas can be

created after TR15 applies. :
Lemma 4.10. Tc(po) is an LL-graph.

Proof. We must verify that Tc(po) satisfies LL1
and LL2. LL1 holds because TR15 draws bidirectional

¢ -arcs. If u O v, then

ue ¢°(P) & P ¢ S, by definition of ¢  for
T,
& Pe sv by lemma 4.9,
S ve (P,

which verifies LL2.

Lemma 4.11, Let v be a consistent node, and let P,

be the conjunction of all formulas in sv' Then for every

Wi T T e e
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formula q in Zv, pqu is valid.

Proof. Formally, the proof proceeds by induction
on the number of transformations which have applied,
showing that lemma 4.11 holds at every intermediate
stage in the construction of T(po), as well as in T(po).
Informally, we only need to notice that each transforma-
tion TR1-TR12 replaces a formula by an equivalent or
stronger formula. For example, TR2 deletes pv g from
Sv, but adds either p or q, each of which implies pv qg.
TR14-TR16 do not remove any formulas from Sv. TR13

-

merges v with v, creating a new node v°°, with Z2,-- =

Zv‘" ZV and Sv,, = ?v’ = SV, which clearly preserves
lemma 4.11.

Lemma 4.12.

a) 1If zu contains Yp (v¥p) and uXw, then z, contains
p (wp).

b) 1f zu contains c](}{pl Vees V kav '\:qu VaeeoV
“Y¥q ) and uXw, then 2 contains O(py v...v Ppv "q, v

...V'hqm) and (plv...vpkv'\'qlv...v '\aqm).

Proof. TR14 places the desired formula in a node
which is an ancestor of w in the construction. The history

get zw retains the formula, [ |

Theorem 4.13. Let A be the structure associated

P

o Sl SR Gy
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with Tc(po). Let v be a consistent node in T(py) a,
be an arc-path in Tc(po) ending on v, and r, be a simple
route in Tc(po) starting at v. Then A, a,' T, &, Ep

for every p in Zv'

Corollary 4.14. ((l) = (3)). 1I1f v is consistent,

then P, is satisfiable.

Proof. There is a simple route r beginning at any
given node in Tc(po), which can be found by following
X-arcs as long as they exist, using some fair method of
choosing between X-arcs. By theorem 4.13, A, T, X k

/\ p, which implies that P, is satisfiable.
peZ
v

Proof of theorem 4.13. The proof is by induction

on the order € over formulas which makes p { g if either
p has fewer W symbols than g, or p and g have the same
number of W symbols, and p is shorter than q. If p4{ q,
we say that p is smaller than g. Each possible form of
p is considered below. We generally write thq for

a, T, Ev E g for brevity. We say that v contains p when p

€ Zv.
P. Pc¢ ZVQ Pes, because P is not reduced,
< ve ¢°(P) by definition of ¢°(P).
S Ve q, (P by LL2, |
S T, kP, ¢
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When r, = (v.,A),

=
=

“H. guppose “HE Zv.

r
v
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4"
“P. AP €2, D VPeZ)

= '»(?v E P)
= ;v E P

H. H ¢ Zv =D vIu(vXu)

and H ¢ Sv

r, = (v, ))

r, E H

by C1,

by the proof for P,

by C2,
by Cl, since H is not

reduced,

Then either there is a consis-
tent u such that vXu, or rv = (v,A). In the former case
f; F “H by R2, which prohibits r  from ending on v.

= (v, <A=A>, and ?; E ~H.

e e e st e e ——

v rrp—— - ——— ~

= T v—r—
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“vp, Ppv q, vp v q). Trivial, using TR1l, TR2.

pPWg. Suppose pWg is 1in zv. Let the nodes on route
r, be, in order,v=vl, Vor s Because r, is simple, there

is an X-arc from vy to v, for all i > 1, up to the end

i+l

of r , if r, is finite. By TR3, any node v, containing

v
pWg also contains either n~q or both p and Y(pwg). 1If
the latter is the case, then by lemma 4.12, Vi4] Must

also contain pWg, provided v,

i+l exists. By repeatedly

applying TR3 and lemma 4.12, we see that either Vie e

Vi all contain both p and Y(pWq) for some k > 0, and
Vel contains g, Or every vy contains both p and Y (pWg).

Let r, be the suffix of r which starts at v.,, and a_-r
i v i v v

= a;°r;. If every vy contains p, then by induction

a;r., 3; Fp for all i, which forces a_'r_, 5; * pWg.

I1f, on the other hand, Vyreeor Vy contain p and Visl
contains nq, then again by induction 3;7?;, E; F pWQ.

~(pWg) . Suppose v contains {pWq). By repeated
application of TR 4 and lemma 4.12, as was done for pWq,
we see that either every node on r, contains q and p and
AY (pWg), or every node up to some point contains q and p
and VY (pWqg), and the next node contains q and p. In the
latter case, by induction and the meaning of pWg, ?; F
~(pWg). In the former case r, must be infinite, for by
R2 r, cannot end on a node with an X-arc leaving it.

Since every node on r_ contains Y (pWq), TR14 draws an

v

X-arc coming out of every node on r_, and by consistency

v

BRRCR WO ey . pacere- aau

Ljﬁ‘
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rule C4, every node on r, (all of which must be consistent)
retains at least one of its X-arcs in TC. Route r, must
pass through some node w infinitely often, so by the fair-
ness of r,, r, passes through node u infinitely often for
every u which is reachable from w by a path of X-arcs.

But every node on r_ contains both p and ~(pWg). Hence

v
node w is inconsistent by C5, violating the fact that r,
is a route in TC.

Yp. Suppose v is consistent and contains Yp. By

lemma 4.12, any node u reachable from v by a single X-arc

contains p. Suppose r = (v,u) r . By induction, ?; F P,
and so ?; k Yp.

_Yp. 1If v contains Yp, then TRl4(a) draws an X-arc
coming out of v. By C4, there must remain an X-arc
coming out of v in Te- The rest is very similar to Yp.

~ Op. Suppose v is consistent and contains “Op.
By TR15, there is a u in T such that v ¢ u, and by consis-

tency rule C3, u must be consistent. TR15 places formulas

dye eee0 Qg in p, with Q) A ... A q NP, and each 9
is smaller than Ap. 1If r, is a simple route starting at u,
then by induction r, kg, for all i, so _; k Ap. Hence
there is a path ;: in A starting at u = v which satisfies
ap, which implies 'iv_r, 'a_vr A~ Op for any r, in particular
for

There is a special problem with the box formulas.

Several different transformations may apply to

. , .
adoes . L5 L EEVERRRY T WK VP TS TRERY. TP d
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O (al V otes Vv an), although, in any actual construction,
only one is chosen. For that reason, it is not technically
correct to say, for instance, that if D(a v vWp) is in
zv' then Df(a v p) is in zv, for a may have been reduced
first. But some disjunct a; of D(al Y ... V an) is re-
duced in v, and we may consider D(al V oees WV an) to be
of the form O(M v ai). Thus, when proving theorem
4.13 for O(a v p), we may assume that p is immediately
reduced in v.

O(a v vwp), O(a v ~(pvqg)). Trivial inductions.

QD(avp), O¢avrp), O(av Op), O(tav ~Op).

Each of these is routine, by the group three transforma-
tions and the valid formulas

1) D(av P) = Dav P,

2) D(awv ~P) = Davap,

3) O(av Op) = Oav0Op,

4) pD(av ~Op) = DavnrDp.
Formulas (1) - (4) can be recognized as valid by realizing
that formulas P, P, DOp and ~ OQ p are independent of the
variable h quantified by 0.

We have considered 0O(a v b) for every form of b
except pWg, ~(pWg), Yp and AYp. O(a v pwg) and
DO (a v ~(pWg)) are hardest to handle, and are done last.
After TR1-TR12 have been exhaustively applied to v, the
only remaining 0 formulas in §, have the form

U(Ypl V see ¥ ka VNYQI ¥ eseae V¥ '\'qu) for klm : 0.

T T e e e — _
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D(Ypr...V kav '\‘quV.Qtv'\dqu)' Letb‘

Yplv...vakvq.quv...vq,qu, and ¢ = Py Vesev Py

gy VooV Ago. Using the valid equivalences

1) Y(pvq) = Ypv ¥qg = ¥Ypv Xq,
2) X(pvg) = XpvXq,
we can show that
1) b = Yc if k > 0,
2) b = Xc if k = 0.

Case 1. Assume k > 0, and 08b ¢ Zv (so Ob ¢ sv,

since TR1-TR12 do not alter Ob). We must show that

a,r . Q k Db, that is, for every route r (not necessarily

simple) starting at v, a,r, 3:, P b. Let r consist of a ?

sequence d of zero or more ¢-arcs going from v tou, followed

by an X-arc from u to w, followed by r“, i.e., r =

d'(u,w)x-r”. Then

Ob e Su by lemma 4.9,
=0Dc ¢ zw by lemma 4.12,
= av-a . (u,w)xrw, av-d-(u,w)x k Dc, by induction,
= v, a s d-(u,w, kc for every p2a s de{u,w
= ax, a,-d-(u,w, Pc since ?3m .
= 'i?', 'a_v- <u+w> F ¢,
= 'a?, 'a-v' E Yc,
= ar, T, Fb.
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Case 2. Assume k = 0 and Db ¢ s;. By lemma 4.9,
Ob is in s, for every U = V. When TR14 sees 0Ob =
c)(myql V ...V Nqu) in Su' it draws an X-arc coming
out of u. If v is consistent, then by C3 u is consistent,
and by C4 there must be an X-arc leaving u in T.. Thus
no route can end on any u equivalent to v, so for every

route r starting at v, ¥ ® X true. It remains to show

Xc = X true A Yc. That was done

that r £ Yc, since b
in case 1.

D(av pWg). We need to know something about the

formulas to which D(a v pWqg) is ultimately reduced.

Lemma 4.15. Suppose .D(al V..o va v Y (pWq))
is in z,- Then there are formulas 9y¢ ---s Q, in S
such that 9y A ... AQy D [j(a1 V oiea v an v Y(pWg))
is valid, and every q; either has no more W symbols than

some aj, or is (Ybl V oo v Yb vy w&cl V oo V Nchlv

k
Y(pWg)) for some bys ... by, Cy¢ eees Cpv k, m > 0, where

each bi and N is no larger than some aj.

Proof. Group two transformations apply to
a (al Veeevoa v Y(pWq)) to produce several formulas,
D@ v...valypwy) for i =1, ..., t, and it
is easy to show t;at each d; is either some a, which was not
reduced, or is smaller than some a,, or is Ye or "Ye, where
e is no larger than some a. Group three transformations

pull each d; which does not begin with Y or AY outside of
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the box, and further transformations on d; cannot produce
a formula with more W symbols than d; (although they can
produce longer formulas). Thus the size constraints of
lemma 4.15 are satisfied, By lemma 4.11 and the fact that
each formula reduces independently of the others by TRI1-
TR12, if D(al ve.ova v Y(pWq)) reduces to Qyr eees

q, then qQ) A eenq > D(alv... v oav Y(pwg)) is valid.
]

Suppose D(a ., pWg) ¢ Zv‘
D{a v pWq) ¢ zv
= D(avgvap) ¢ z, by TR7,
= E k O(avrgv p) by induction,
for O(avaqvp) has fewer W's than D(av pWg).
O(av pWg) ¢ Zv
= O(avagv Y(pWa)) € z, by TR7
: q1' LEC Y qzesvl
where 9ys +--r 9, are the formulas of lemma 4.12. Those
9 which have no more W symbols than av nq are satisfied
by ?; by induction. All that is left is to show that, if
q; = O(Yb; v...vYb v AYCy v...v AYC ), then ?; kaq,.
For then
E;FD(Avmqvp)Aqla...aqz
= 1, F O@avrgevpl 4« D(avagy Y(pWG)) by the fact
that 9y Aeeeaq, > D(avaqv Y(pWq)) s valid,

= E'; ¢ D(a v pwg) by semantic implication.
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Fquivalently, we must show that for every route r (not

necessarily simple) starting at v, a_r, 5; [ Yby v
kav NYCy Vel v aYe v Y (pWqg)

Claim. Suppose, by induction, that theorem 4.13
holds for all formulas smaller than O(av pWg). Let f = )

(Ydlv cee V¥ Ydsv mYelv ...v-mYet) and g = (d, v ,..v dsv

1
melv ...v‘met), where each di and ei is no larger than

either a or g, and suppose that Su contains O(f v Y(pWag) ).
Then for every route r starting at u, ar, E: Ffvy(pWg).

Lemma 4.15 asserts that each q; = IJ(fiv Y (pWq) )

f satisfies the conditions of the claim. Hence, by the claim,
a T EGI £, v Y(pWg) for every r starting at u, which is ra
what we want. ¥

Proof of the claim. The proof is by subinduction on

the order over routes which makes r1 < r2 iff either r,

has fewer ¢ -arcs than rz, or rl and r2 have the same

positive number of ¢{-arcs, and ry has fewer X-arcs before
its first {-arc than r,. Since routes can have only
finitely many <¢{-arcs, the induction covers all routes.

Case 1. r has no ¢-arcs, i.e., r is simple. If ﬁ

r has no arcs at all, then r trivially satisfies Y(pWq),
and the claim holds. Suppose r = (u,w)xr‘. By lemma 4.12, t
zw contains gv pWg., TR2 selects one of dl' seey ds'

Ne1s ceey VL pWg to be in zw. The selected formula must

be smaller than O(av pWg), so, by the main induction

hypothesis, ¥~ must satisfy it, since r“ is simple. Hence
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au(u,w)xr‘, au(u,ﬂx E g v pWg,
= 'a_u?, aFY(ngWq).
: Qur, Gu h fv

|
{
|
! Case 2. r = (u,w)o- r begins with a ¢ -arc.
i Let a, = au(u,w)o.

O(fvY(pWq)) ¢ Su
= D((fvY(pWg)) € S, by lemma 4.9,

= a,* T, a E fvY(pWg) by the subinduction

hypothesis
= a_uT, 3; B £ vY(pWg) since bar erases
¢-arcs,
Case 3. r = (u,w)xr"', and r” contains a ¢{-arc.
O(f vy Y(PWQ)) € S,
= Oi{gvpwWg) ¢ z, by lemma 4.12,
= Q(gvrgvp) e 2, by TR7
= ajr,, a, FDO(gvrgvp) by the main induction
hypothesis,
= a—w-?’. 'a_; F gvagvp by semantic implication.
Also,
O(fvY(pwal) e S,
= 0O(gvpWqg) € z, by lemma 4.12,

= Q(gvrqvY(pWql) € 2, by TR7,

= X", 8, PgvrqvY(pWg) by lemma 4.15 and

Bw

the subinduction hypo-

thesis.
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By the validity of (gvvgvp)a (gvrgv Y(pWg)) 2 gvplg, i

we have ]
—_— — }
a,r’, a, 6 kgvpWg :
ar. a, E Y(gv pWg)
a T, 3; E £ v Y(pWq)

by distributing Y over v.

O(av~n(pWg)). The proof for this case is very

similar to that for DO(av pWg). The main difference is
that, instead of Y(pWg), we have ~Y(pWg), and must take
into account in lemma 4.15 the possibility that k might

be zero. The tedious proof is omitted.

4.6. Proof and Completeness

As is the case with other decision algorithms based

i O O LR bk Gt S
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on tableaux, a complete proof system for MPL can be de-
rived from the tableau method for MPL. The axioms and
inference rules of such a system are listed below as system '

A.

i System A

Axioms
Al. All substitution instances of propositional
calculus tautologies.
a2. 0Op > p.
a3. D(p>q)  (Op>0Dq).

a4. Op > 0O9¢p.

aAs5. oép20OP for P ¢ L
A6. H > Y false.

A7. Dyp 2 yQOp.

A8. Yp = (X true > Xp).
A9. Y(p> qgq) > (Yp 2 Yq).
Al0. Gp > Yp.y

All. G(p=> Y¥Yp) = (p = Gp).
Al2. G(p » q) @ (Gp @ Gq).
Al3. Gp > pWq.

Ald4. pWwg 2 g ® (p A Y(pWqg)).

Rules of Inference

PAl. p, P2 gk g (Modus Ponens). yi
PA2. p F Qp. H
PA3. p kGp.

. e Ll ‘\-
s R R ALt At e A
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Verification of soundness of system A is left to the

reader. The only axiom which is not obviously valid is
A7. Moving the Y in front of the [ effectively decreases
the range over which 00 quantifies to those paths which
make the same next transition as the current path.

Before proving system A complete, we list a few useful
theorems of system A. We say that p is provable by PC from
dyr -e-r G, if p follows from Qyr even 9y and instances

of Al by Modus Ponens.

The reader familiar with the classical modal logic
S5 will recognize axioms Al-A4, together with proof

rules PAl and PA2, as a complete proof system for S5.

It follows that every substitution instance of an S5
theorem, where O and ¢ are taken to be the S5 modali-
ties, is an MPL theorem. Due to axiom A5, the converse ic
not true; that is, there are MPL theorems involving only
D, 9, ~ and propositional variables which are not S5
theorems. MPL is prevented from collapsing into proposi-
tional calculus only by the operators Y and W. Theorems

TAl, TA2 and TA3 are all proved in [HC68] for S5.

Theorem TAl.
a)  ODOp
c) - 40P

ap., b) +DO¢p
Dp, d) r $Op

op, .
oP. ‘;'i

Theorem TA2. F O(parg) Op A Dq,

§ ' e e a——— s
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Theorem TA3. For P ¢ ¢o' p any formula,

a) F D(avP) = Navp,

b) F O(avP) = Da v P,

c) + DO(avOp) = DavOp,

d) + O(avép) = Oawv Op.

Theorem TA4.

a) v Y(pvgqg) = YpvYqg, ;
b)  Y(pvg}l = YpvXqg, f
c) F X{pvg) = XpvXq,

d) F Y(p>q) = (Xp>Xqg),

e) + Y(pAag) = ¥YpAYq,

f) F X(pAag) = XpaYqg,

g) F X(paq) = XpaXqg,

h) F Xp = ¥Yp A X true,

i) Pk Xvp = "Yp.

Proof. Let PA4 be the derived inference rule

pkYp (from PA3, A}lO0 and PAl).

1) (Ypa X true)> Xp A8, PC;

2) Xp > aywp definition of Xp;

3) Xp © n(X true ® X\p) (2), A8, PC;

4) Xp © Xtrue aAXnp (3), PC;

S) AXAp = Yanp definition of X, PC;
6) Y(»p = p) (5), Al, PA4;

7) Yawp £ Yp (6), A9 twice, PC;

T et el LT N e
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o 8) Xp = XtrueayYp (1Y, 4), (7)), PC;
- 9) Y((pvqg)>(vw>q)) (8), Al, PA4;
10) Y(pvq)> (Yvp>Yq) (9), A9 twice, PC; ,
11) Y(pv q) > (Xp v Yq) definition of Xp, (10}, «
IE’ ' PC;
| 12) Y(p>{(pvaq)) (11), Al, PA4;
13) Ypo2Y(pvqg) (12), A9, PC;
14) Yg 2 Y(pv q) symmetyry, (13)
15) YpvYg =2 ¥Y(pvq) (13), (14), PC;
16) Xp = Yp (8), PC; v
17) XpvYq>2YpvYq (15), (16), PC; 3

18) XpvYg = YpvY¥g = Y(py q) b
(11), (15), (17), PC;

19) Y(pag>p) Al, PA4;

20) Y(pag)>Yp (19), A9, PC;

21) Y(pagq) ® Yq symmetry, (20); %
22) Y(p=>(g>paqg)) Al, PA4;

23) Ypo> (Yg=2Y(pAaq)) (22), A9 twice, PC;

24) YpaYg>2Y(p aAq) (22), PC; ;
25) YpaAaYg 2 Y(pagq) (20), (21), (24), PC. "’

|

The reader should have no difficulty proving those

parts of theorem TA4 which are not lines above.
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Theorem TAS. DXxp = x0Op.
Proof.
1) DO (Xp = Xtrue aY¥Yp) TA4 (h), PA2;
2) QOXp = O(Xtrue AYp) (1), A3 twice, PC;
3) DOXp = OXtrue ~Q0Yp (2), TA2, PC;
4) DXtrue > Xtrue A2;
5) OXp = Xtrue a DYp (3), (4), PC;
6) DOXp = XtrueaYOp (5), A7, PC;
7) XOp = Xtruea YQp TA4 (h);
8) [OXxp = XQp (6), (7), PC.

Some definitions of sets and formulas in the tableau

T(po) make the completeness proof more concise.

;,= {q € S,: q has the form P, *P, Op or “Op .
v - Sv - SV'

X

v = {p: vp e s,Juirp: n¥pe Sv}

U{(alv..-v akv'\‘bIV.-'V'\‘bm)O

il T el e N L 4

-
.
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C](al Vieeev oag v b VoLV me):

D(Yal v ... v Ya, v 2%Yb. v ... v Wbm) £ sv}.

K 1
p = /\ aq.

v qcS,,

2o = /\  aq. Py = /\ Q.

Voooqesy” : €3y

z, = /\ a- P, =//§} q.
qCZv qESV

We now state four lemmas, then prove that system A

is complete.

Lemma 4.16. For TR1-TR1l2,
a) If p + q,r is a transformation, then + (p =2 q A r);

b) 1f p + q or r is a transformation, then

+(p qvr).

Proof. Routine.

Lemma 4.17. For every node Vv in T(po) (consistent or
inconsistent), o (pv > zv) .

Proof. Llemma 4.17 is proven almost identically to lemma 4.11.
where that proof uses the fact that if p is transformed to g, then
g>p is valid, here we must use the fact that gop is provable.

That follows fram lemma 4.16. '

Lemma 4.18. Suppose there is an X-arc leaving node
v, and Uys .., u are all of the nodes in T(po) {(both
consistent and inconsistent) which are reachable from v by

an X-arc. Then & (Pz > (Pulv ceeV Pun)).

o e — e S -

\)
= i - -w“ﬂ#mn#max&ﬁr»vr!‘
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Proof. Nodes Uys ..., u, were created by first
creating a node u, by TR14, and then splitting u, by

or type transformations. We show that at every stage

- -

in the reduction of ug to Ups eeew 0, if Ujr ceer Uy

are the present nodes, then (pﬁ > (pu V...V Py )).
1 k

The base case, uo, is trivial since TR14 sets Su = Sz.
o

As each transformation TR1-TR12 is applied, either a

conjunct of Pu, is replaced by provably eguivalent
i
conjuncts for some i, by lemma 4.16(a), or u{ is split

»

by an or type transformation into u{ and u{”. By

X

lemma 4.16 (b) ’ }-(P\J;‘ \%4 Puil‘ = Pu‘{) . Hence "(Pv =
P .v...v P . v P o»VP s vP . V «ss VP ‘) by PC.
Yi Yi-r YW Ui+l "k

The formula added to v by TRl6(a) is implied by formulas
already in Sv' TR16 (b) adds no formulas to the original
node of a group of nodes connected by {-arcs, and only
that original node can have an X-arc pointing to it.

It is easy to see that the filtration rule preserves

lemma 4.18.

Lemma 4.19. Suppose there is a u such that vXu.

Then Pk (pvax pﬁ).

Proof. Let the Y, ~Y and O formulas in sv be Yal.

i i i
LI Y Yak' ~Yb1, [ I3 '\’szp D(Ycl Voo Vycmiv '\'Ydl v.o'
v«xdi ), for i=1, ..., t. By definition p: =
i

—t® o - LERRRLE & TRAR S0 PRS- ST

"
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Naja /i\"vbi A /1\ a( \J/c; v \3/ '\od;). Because every

member of Sv is a conjunct in P, » We have

F(p, @ /AN YaiA/i\Wbi,«/i\D(\j/vc; v\j/-»m;)).

Theorem TA4 can be used to bring conjunctidns and dis-
junctions of Y and ~Y formulas under a single Y. Axiom

A7 is used to move a Y outside of a [J. We get

i i
. (pvzy(/i\ai,‘/i\wbi,\/i\ﬂ(\j/cj v\j/dj))),

X
= F p,> Yp,.

Moreover, TR14 only draws an X-arc from v to u if either
£ > 0 or m, = 0 for some i. In either case, TA4 and A2

permit us to prove the stronger form

X ’
F P, Xpj, -

We now finish the proof of theorem 4.7, proving

(3) = (2) and (2) =% (1).

Lemma 4.20. ((2) = (1)) 1f P, is provable then

“P,, is valid.
Proof. By soundness of system A.

Lemne 4.21. ((3) = (2)) If v is inconsistent in

T(po), thenb-wpv.
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Proof. The proof is by induction on the order

in which nodes are marked inconsistent.

Then zv contains both p and w. By lemma 4.17,

F (p,2"P A P), SO by PC, + P,

Case 1. Suppose v is marked inconsistent by Cl.




i
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Case 2. Suppose v is marked inconsistent by C2. ;

.
.t

Then Sv contains H and there is an X-arc leaving v. By

lemma 4.19, F p = pr, so by TA4(h) F p. 2 X true.
v v v

Using axiom A6 and PC, we have F “P,,

Case 3. Suppose v is marked inconsistent by C3.

Then there must be a node u connected to v by a ¢ ~-arc,

e ———

-v. £y

and which is marked inconsistent earlier than v. Let p; =

A ...A a_and p°>" =b, A...A b . Define p_ = na
v 1 n v 1

a, . n ‘
oo ty
vV ...V wan, and P, = Nbl V oeea V wbn. H
- “P, by induction, 1
= k(] A pyT) by p, = P; A P r

* - —. s
(*) D + P, v P, by PC, ¢
= - D (] v P by PA2. !

Every formula in 5& either begins with "O or O , .
or is P or WP for some basic formula P, by the definition ;
of p&. . can be eliminated at step (*) by PC. By |
repeated application of theorem TA3,

k EG v O 5&'.
By TR16(a), ~ 0O 5;' is in S;, and so WO 5&’ is a ;

disjunct in Bu‘ PC eliminates duplicate disjuncts, giving

F P
= Fp) by PC,
= ~p by lemma 4.9, ;
= Fp, byp,2 P A P, - f‘

Case 4. Suppcse v is marked inconsistent by C4. Then

there is an X-arc leaving v, and all of the nodes Upr eeen by

. L [}




149 'l'

which are pointed to by X-arcs from v are marked inconsis-

tent before v.

/.\(ui inconsistent)

by induction,

= i uy

= F ’q\ “Py, by EC,

= F mpﬁ by lemma 4.18,
= kG apl by PA3,

= Y ap) by AlO,

= kX pf,,

= Fp by lemma 4.19.

Case 5. Suppose v is made inconsistent by C5. Let
Vir eeve Vi be all of the nodes (including v itself)
which are reachable from v by a path of zero or more X-arcs,
and which are corsistent when C5 applies to v. We may
assume that Cl is applied wherever possible before C5 is
used. We can show that every vy has an X-arc leaving it.
For, in order for C5 to apply, every zvi must contain
both ~(pwg) and p. If ~(pWg) is transformed to q,p and
AY (pWg) by TR4, then vi must have an X-arc leaving it,

On the other hand, if ~(pWg) is transformed to q and “p,

then vy is inconsistent by Cl, Let v;, sees v;i. m> 0,
be all of the nodes for which v, X v§ , for i = 1, ..., k,

i .
=1, ..., m,. W2 write Pi for Pv1 and Pj for P, i
1) F(p;>X P’: ) by lemma 4.19;




(2) F
(3) F
(4) F
(5) F

(6) F
(7 F
(8) F

But (8) holds
to give
(9) F

Let q = \/pi.
i
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for every i, so all can

Y%DXY%.

q > Yq
G{g > Yq)

qg > Gq

by lemma 4.18;

by (2), PA3, Al0;

by (3), TA4(d);

(1), (4), PC;

by PC;

by (6), PA3, Al0, TA4;

by (5)' (7), PC.

be combined by PC

by (9)0 TA4 (h);
by (10), PA3;
by (11), All.

Z.. contains p for all i, so by lemma 4.17

(10)
(1)
12y F
Vi

(14)
1s)
(16)
(17 +

(p; ® p)
(@ @ p)
G(g = p)
Gqg @ Gp

for all i;

by (14), PC;
by (15), PA3,
by (16), Al2;
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(18) + p; ° Gp by P; 49 (12), ‘
(17), PC; ]
|
(19) P; = PWg by al3.
|
Choosing v, = Vv, we see that
(20) F p, > pWg. g
But ~(pWg) is in Zv' or C5 wouldn't apply. By lemma 4.16 Fi
(21) F p, > ~(pWa), '
; and, combining (20) and (21) we have Y
F~p,, -

Theorem 4.22 (completeness) ii p is valid then y

P is provable in system A.

Proof. Let Upr eeer ug be all of the nodes in T (Xvp)
which are reachable from Vo by an X-arc. Vo is not changed

when it contains Xwp, so P, = Xp.
o

p valid
> Yp is valiad
= Vo is inconsistent in T(Xvp)

by theorem 4.7,

= u,, ..., U are inconsistent
1l n

by consistency rule C4,

= mpui for all i by theorem 4.7, . ‘
= '\v(p YV eoeov P ) by pPC '5

u, u, ' .
= P, X by lemma 4.18, PC.

° |
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But P X is just p, so
o

kp by PC. |

Gabbay et al. define a proof system DUX for the
logic of until on infinite paths. Their axioms are
related to A8-Al4, but are different due to their slightly
different definitions of G and X, and the fact that their
paths must be infinite. Our system was developed
independently of theirs, and our completeness proof is
quite different from theirs. As it is possible to
express in MPL that a path is infinite, our method
encompasses theirs.

As a final corollary to the decision method for MPL,
we note that the LL-processes, those defined by finite

LL-graphs, are complete for MPL,

Theorem 4.23. Every satisfiable MPL formula is

satisfied by a model whose process is an LL-process. §




»
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Chapter 5

Programs in Process logic

In this chapter we define an extension MPL/P of MPL
by adding programs to the syntax of formulas. Though

MPL/P is a natural extension of MPL, MPL/P proves much

i

|

more difficult to analyze than MPL. We have few results j

concerning MPL/P. {
The main purpose of this chapter is to give a formal .

definition of MPL/P, an important extension of MPL, and {

to relate the expressive power of MPL/P to that of other

logics. In judging the relative power of two logics of

processes, it is only fair that either both have programs,

or neither has programs. We show that MPL/P is more ﬁ

expressive than PDL or SOAPL, and is at least as expres-

sive as PDL’ and Nishimura's process logic, NL. We con-

jecture that MPL/P is strictly more expressive than all

four of the above logics.

5.1. Definitions

In this section we define MPL/P, Programs were
defined in Chapter i. For MPL/P, we need to extend

programs to labeled programs. r
Labels

The usual method of reasoning about a program is to
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reason about each part separately, combining the separate
results to obtain a result applying to the whole. While
that method works well for sequential programs, we encoun-
ter difficulties when trying to use it for concurrent
programs. The behavior of a running in isolation can be
so different from its behavior when running concurrently
with B, that we can never divorce a from 8 when we reason @
about a//B. Nevertheless, we would like to be able to
discuss a's contribution to the system a//8. We do that
by giving a a name, say £. By referencing £, we can make
statements such as:

1) 1In ao//8, whenever o halts, p holds;

2) (finite delay) on every infinite path, o makes
infinitely many transitions;

3) o preserves the truth of p (though 8 may not).
This is the sort of non-interference property which is
implicit in Owicki's proof technique, but which cannot
be expressed in her logic.

Labels have many different uses. It is clear that

we need some means of referring to parts of a program,

But it is not the purpose of this work to study the
relationships between various forms of label references.
Rather, we simply demonstrate what can be said with certain
types of label references. Thus we feel justified in
providing MPL/P with a variety of means of referring to j

labels. It may turn out that some are expressible
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in terms of the others.

Labels have basically two different uses; as position
labels, telling the current value of a program counter,
and as transition labels, telling which part of a prograrm
makes a particular transition. Statement (1) above uses
a position label to tell when o has terminated; that is,
when a is at its final label. Statement (2) uses a
transition label to determine whether a makes any
transitions.

Labels are added to processes as follows. To every
transition is added two sets of labels from a label set
' The first set consistys of position labels, the second
set of transition labels,

(P(r) xUx P(r) xu)~*¥,

WQ(U)

Hl(U) P(Wz(U)).

The operator ":" is the labeling operator. If ¢ is a
label and o is a program, then f:a is a program. Every
transition made by o is labeled 2. 1In llzlzza, every
transition is labeled both 2 and Lge The function

m: programs - nl(U) is defined as follows:

1. Basic programs have the usual semantics, with
§=T¢=@ in every transition <S,u,T,v>. The constraints
listed on page 12 apply to basic programs,

2. If p is a formula, then Op? is a program. The

box forces testable formulas to depend only on a stage

and a process, not on a path. If p is already independent

P
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of a path, then OpZp, and the O may be ignored. As are

basic programs, tests are labeled @.
3. 7(f:a) is obtained from w(a) by replacing every
transition <S,u,T,v> by <sv {2}, v, Tu {2}, v>,

4. avuB, o;B8 and a* have the usual meanings.

5. The shuffle operator // must be defined so as
to maintain position labels. Transition labels need no
special treatment. If o0 and T are two transition

(1)

sequences, define © to be 0, with every transition
<S,u,T,v> replaced by <Sv 8°, u, T, v>, where 1 =

<s“,u”,T",v'>1< If 0,0, ... € ©w{a) and TyTp «++ € m(&),

172
(any of the o and T; are permitted to be either empty,
finite or infinite) then 01(11)11(02)02(12)12(03) . on

is in w(a//B).

The dot operator

An MPL formula describes a property of a process.
Until now, we have only tested the truth of a formula with
respect to the process 7 provided by an MPL structure. i
A natural extension of MPL is to let a structure provide !

many different processes, and to add to MPL a means of

specifying which process or combination of processes
is supposed to satisfy a given formula, The dot operator
serves that purpose, the formula asp meaning "p holds

for process n(a)."
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5.2. Formal semantics of MPL/P
An MPL/P structure is a six-tuple A = (U,Zo,wo, i
¢O,¢O,F): where U,@o and ¢o are the same as in an MPL
structure, and :
XO is a set of basic programs, !
Tt Lo HE(U) assigns a process to each basic F
program, and '1
I is a set of labels, g
An MPL/P environment, providing all of the information »f
needed to determine the truth value of any MPL/P formula, Fé
consists of a structure A, a process m, a path ¢y € 7 1
and a stage T < V.
Let a be a labeled program, & ¢ T, p.q be MPL/P
formulas, and P ¢ ¢0 be a basic formula. *
l. P is an MPL/P formula. n,y,7T F P iff end(1)
€ ¢°(P). i
2. ~p, pvgqg are MPL/P formulas, with the usual
semantics. 5

3. Yp is an MPL/P formula. 7n,y,TkY¥Yp iff
((¢ = 1<S,u,T,v>y" and t<S,u,T,v> is legal)
= 7m,¢,1<S,u,T,v>Ep).
4. pwqg is an MPL/P formula. w,y,Tk pwWg iff
(Vi (1<t <y D (V1) (1177<1” = w9, 7" q)
D 71,9,177 F pl).
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5. Dp is an MPL/P formula. =n,y, 1k Dp 1iff
(VY " e my(y 21 =n,0",1Fp).

6. ae+p is an MPL/P formula. Let u = end(t).
m,V,TEa'p iff (V VY~ ¢ n(a))(w‘j(u,k)'-'$ m(a),¥°,
(u,A) F p).

We provide a variety of formulas for referencing
labels.

7. Nf& means "the next transition is made by
program £." 7w,y,T £ N2 iff ¢ = 1<S,u,T,v>y” and

£ € T.

8. in(%) means "some program is executing in f:a."

T,¢, TEin(R) iff ¢y = 1<S,u,T,v>y” and L € S.

9. @2 means "some program is just ready to start
L:a." w,y,TEEL iff (T=1"<S,u,T,v> and & ¢ S, or
t=(u,A)) and (y=1<8°,u”,T7,v°>p”° and L € S7).

10. end(%) means “"some program has just finished
L:a." w,y,TE end(L) iff T=17<S,u,T,v> and & € S and
(y=1<8°,u’, T°,v°>y” and & ¢ 8%, or yY=1).

Examples of formulas using labels are

1) whenever a terminates, p holds =

(2:0)//8+0G(end(R) 2 p);

2) o preserves p =

(2:a)//8- 0G(paA N2 D ¥p).

T e S T S
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5.3. Expressive power of MPL/P

We begin by relating MPL/P to PDL+. SOAPL, and
NL. Each has been claimed (see [HP78), [Pa?78]), [N79))
to be a powerful logic, particularly NL, which
Nishimura shows is expressively complete for a class of
logics related to and including Pratt's process logic.
In each simulation, we assume that the lcgic being
simulated is defined in an appropriate manner over MPL/P

models, so that it makes sense to relate expressive powers

of the logics.

por?

The [ ] and [ )* operators of ppoL* (see [(HP78]) are ;
defined in MPL/P as follows: |

a*DG(OH>p).

{u)p
[0]+P

Hence MPL/P is at least as expressive as pDLY. That MPL/P

{alpAaa«DFYfalse.

is more expressive than PDL follows from the fact that SOAPL
is at least as expressive as PDL, and MPL/P is more
expressive than SOAPL.
SOAPL

Nishimura [N79) shows that NL can simulate SOAPL,
80 we only need to simulate NL. That MPL/P is more
expressive than SOAPL follows from Parikh's result
[{Pa78) that every satisfiable SOAPL formula is satisfied

by a closed process. Ac«(FYfalge AG OXtrue), stating
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that A contains no infinite paths, but A can always make
more progress, is satisfied by some non-closed A, but not
by any closed A.

NL

Nishimura's operator [a] is just our dot operator .,
Besides [a]), NL has only until and Boolean functions,
which are easily handled by MPL/P. NL has no analog to
our 0J operator, which leads us to conjecture that NL
is weaker than MPL/P.

Recently Harel, Kozen and Parikh [HKP80] have
defined a process logic PL which merges temporal logic
and PDL in a way somewhat different from MPL. PL was
unknown to us when we developed MPL. 1In PL, all formulas,
including basic formulas, depend for their truth values
on paths. The semantics of the PDL operator <g>p is

changed as follows:
Y F <a>p iff 3y° € nla) (Vv EP).

Additionally, PL includes the until operator, and an

operator f which is defined by

v F fp 4iff start(y) k p.
The relation between PL and MPL/P is not at all clear.
Due to our result that nonstandard and standard semantics
produce the same satisfiable formulas, it might not be

important that basic formulas are interpreted over paths




.
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in PL. But MPL/P does not appear to be able to simulate
<a>p, due to the fact that <a>p depends on an entire path,
not just its final state, Conversely, PL does not appear

to have any means of expressing branching time properties

of programs.

Finite delay

Our // operator permits one component to run forever,
to the exclusion of the other. 1In some applications we
may want to assume that // is fair, so that any component
which is active eventually gets to run a step. Even with
our unfair // operator, MPL/P can be used to discuss
programs with a fair // operator. For example, suppose

our fairness criterion is that, on every infinite path

in a//8, both a and B make infinitely many transitions.

let

FD(2) = (GXtrue = GFNZ).

Then
(llzu)//(lzzﬁ) '(FD(El) A FD(L,) > p)

states that every fair path in o//8 obeys p. FD(1) is

an over simple fairness criterion. A more reasonable one

takes into account that one of the components may terminate

or remain blocked forever. A statement which takes into

account those possibilities is

e

B ecyiny -

N O TR WO SIS, 1 SON-UL, X . LR 2 SR VRSN
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FD2(2) = GXtrue > (Fend(%)v GFNL vFGD"NZL),

which states that, on every infinite path, either program
£ terminates, or it makes infinitely many transitions,

or beyond some stage it is never possible for 2 to make
the next transition, even on a different path.

Partial correctness proofs

One test of the power of a logic is whether existing
proofs can be carried out within that logic. 1In order to
use a particular proof method, not only the end results
but all of the intermediate results must be expressible
in the logic. Suitable proof rules can then be written.

Owicki [0G76] gives a proof system for proving
partial correctness assertions about concurrent programs.
A very important notion in her proof system is that of
non~-interference; that s, in o//B, no step of a can cause
P to change from true to false. We have shown above that
non~interference can be expressed in MPL/P. Owicki's
logic provides no mechanism for expressing non-interfer-
ence, with the result that non-interference must be added
artificially to a proof rule, whose antecedents are not
formulas, but are proofs. By expressing non-interference
in MPL/P, we carry out simulations of Owicki-style
proofs, using the usual sort of proof rules, which prove

certain formulas, given certain other formulas, Further-

-_— -~

D %

L
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more, we are permitted greater flexibility. If we have
designed our program so that B does not interfere with ii
o because B preserves p, we can prove, once and for all, -
that 8 preserves p in a//B., We might then show that !,
a//A works correctly (for some suitable meaning of

"correct") whenever A preserves p.

5.4. Conclusion

We have shown that MPL/P is a powerful logic of
processes. Moreover, with such statements as "a cannot
deadlock,” written in MPL/P as a*JG(Hv ¢ Xtrue), and the
statement that all finite delay paths of ao//8 obey p,
we have shown that at least a good part of the power of

MPL/P is needed. Any logic of processes which is less

expressive than MPL/P should have its lack of power
justified, whether to permit analysis, or because for a

certain application the full power of MPL/P is not

needed.

We have no decision method or proof system for MPL/P.
The tableau method used for MPL does not readily extend !
to MPL/P. 1t seems unlikely that the addition of
programs to MPL results in an undecidable logic, The - ’
existence of a complete proof system for PL [HKP80), which
appears to have some features in common with MPL/P, is

encouraging.
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